
國 立 清 華 大 學

博 士 論 文

超大型積體電路設計下，針對功率、良率，

及可靠度之架構探索

Architecture Exploration for Power, Yield, and

Reliability in VLSI Designs

 所 別 資訊工程學系 組別

 學號姓名 944325 謝昂志 (Ang-Chih Hsieh)

 指導教授 黃婷婷 博士 (Dr. TingTing Hwang)

中華民國一百年五月

摘 要

 隨著半導體製程技術的發展，先進的電子整合科技如系統級封裝技術

(System in Package)及直通矽穿孔技術(Through Silicon Via)，讓設計者可以

將更多的電子元件整合在單一設計中，並在極小的單位面積下，開發出在功能愈

來愈強，複雜度愈來愈高的電子系統。這些先進的技術雖然可以帶來許多好處，

卻也在半導體的設計及製造上，帶來了新的挑戰。在單位面積下，提升電子元件

數量的同時，也會增加功耗密度(Power Density)，這將會導致熱能(Thermal)

的問題，大幅影響現今電子系統的可靠度。因此，低功率的系統架構設計以及熱

能管理機制在未來的電子系統中將是不可或缺的。此外，先進的整合科技中，需

要用到較為複雜的製程技術，如何在使用這些技術的同時，維持高良率(Yield)，

對於電子產業來說是非常重要的。在本論文中，針對快取(Cache)、主記憶體(Main

Memory)，以及三維導線連結(3D Interconnect)等三個層級，我們提出了新的系

統架構以及優化方法，以提升功率、可靠度，以及良率方面的表現。

 首先，在快取記憶體系統的部份，我們開發了一個可以在動態下作調整

(Run-Time Reconfigurable)的延展式快取架構(Expandable Cache)。由 G.

Bournoutian及 Orailoglu所提出的延展式快取架構，可以在很小的面積成本下，

有效的降低嵌入式系統(Embedded System)的快取誤失(Cache Miss)及功能消耗

(Energy Consumption)。然而，原先的延展式快取架構，只使用了一種固定的延

展方式，會產生嚴重的置換(Thrashing)問題。針對這個現象，我們以原先的延

展式快取架構為基礎，開發出一個可以針對程式的動態執行特性，去變更延展方

式的快取架構。透過執行在編譯(Compile)階段所加入的特殊組態指令

(Configuration Instructions)，延展式快取架構的延展方式可以在動態下作變

更。基於 SPEC 2000 的實驗結果，我們所提出的新快取架構，與原來的延展式快

取架構相比，在快取誤失的比例上，有 14.74%的改善。在功能消耗的表現上，

以雙路集合關聯(2-Way Set-Associative)快取架構為基準，我們所提出的架構

比原先的延展式快取架構要好上 5.62%。

 接下來，針對三維設計下的主記憶體系統，我們提出了一個考量熱能表現的

記憶體映程(Memory Mapping)技術。在三維設計中，一個硬體記憶體區塊的熱能

表現，取決於該區塊的功耗表現(Power Behavior)以及散熱能力(Heat

Dissipating Ability)。功耗表現的部分，主要由所執行程式的存取特性來決定；

而散熱能力，則要由記憶體區塊所在的實體位置所決定。故，一個考量熱能表現

的記憶體配置(Memory Allocator)系統，必須有著下列兩項特性。第一，該配置

系統要能同時考量一個記憶體區塊的功耗表現以及散熱能力；第二，該配置系統

要能考量到一個硬體記憶體區塊，在應用程式執行過程中的溫度變化。在本論文

中，我們將會提出一個同時考量上述兩項特性的記憶體映成演算法。我們所提出

的方法屬於靜態(Static)的熱能管理機制，主要運用於嵌入式系統軟體端的設計

流程。實驗結果顯示，對於單核心的系統，我們的方法在最好的情形下，與傳統

直接的記憶體映成方式相比，可將記憶體系統的最高溫度降低 17.1℃。平均來

說，記憶體系統的最高溫度降低了 13.3℃。對於四核心的系統，當 L1 快取分別

設為 4KB 與 8K 時，記憶體系統的最高溫度分別降低了 9.9℃與 11.6℃。

 最後，針對直通矽穿孔導線的部分，我們提出了一套修復的機制。在三維設

計中，直通矽穿孔導線，主要用於在垂直方向的訊號連接，對於三維晶片來說非

常重要。但就像一般的半導體元件，直通矽穿孔導線的製造及連結，可能會因為

製程上的問題而無法正常運作。當利用三維整合技術所堆疊的晶圓粒(die)愈來

愈多時，因製程因素所造成的直通矽穿孔導線失效問題，將會嚴重的影響生產良

率及製造成本。針對直通矽穿孔導線失效問題，本論文提出了一個合乎成本考量

的修復架構。透過機率模型的分析，我們整理了一些重要的觀察結果。首先，當

層與層(Tier-to-Tier)之間的直通矽穿孔導線數量少於 1000 及 10000 時，實際

上層與層之間會失效的直通矽穿孔導線數量通常不大於 2及 5。假設層與層之間

失效的直通矽穿孔導線數量在 2 到 5 之間，足以涵蓋 99.9%所有的情形(包含有

失效直通矽穿孔導線以及沒有的狀況)。在這樣的假設下，當每個直通矽穿孔導

線區塊(TSV Block)各配置有一個冗於直通矽穿孔導線時，若將直通矽穿孔導線

區塊所包含的導線數量限制在 50 及 25，可以達到 90%及 95%的修復率(對於有直

通矽穿孔導線失效的情形來說)。就整體的良率來說，我們提出的修復架構，足

以將絕大部分因直通矽穿孔導線瑕疵而失效的晶片加以修復，並將直通矽穿孔導

線的生產良率提升到 99.4%。

誌 謝

謹以此論文獻給

 我的父母親-謝茂盛先生及李秋燕女士

 我的指導教授-黃婷婷教授

 我的口試委員-張世杰教授、王廷基教授、麥偉基教授、陳添福教授、

 黃俊達教授

 我的學長姐-一宇、文雯、武安、賢德、巽言、

 昌博、岳叡、巧禎、侑儒

 我的同學-柏元、名詔、世梁、偉恆、冠賢、福偉、博揚

 我的學弟妹-哲宇、介俊、鈞澤、翌聖、

 詠勝、俐宇、

 俊成、宏隆、子誠、信皓、

 安琪、家尉、俊宇、

 明賢、宗祐、健銘

 我的朋友-博耀、聿謙、仲韓、宗言、明釗、祐世、巧玲、光曜、勇志

 And... My Beloved 家禎～

謝謝你們

Architecture Exploration for Power, Yield, and
Reliability in VLSI Designs

Student: Ang-Chih Hsieh

Advisor: TingTing Hwang

Department of Computer Science

National Tsing Hua University
HsinChu, Taiwan 300

May, 2011

Abstract

Modern integration technologies including system in package (SIP) and through

silicon via (TSV) make it possible to put more devices in a single IC design.

More powerful and complex systems can be developed within small areas.

In addition to the advantages brought by these technologies, new challenges

are revealed. Increasing the number of devices in a given area often results

in higher power density. This causes thermal problems which can severely

degrade the reliability of modern electronic systems. Low power architecture

design and thermal management scheme are required. Also, more complex

fabrication processes are required for modern integration technologies. How

to improve the yield is a critical design issue for IC industry. In this dis-

sertation, architecture designs and optimization technologies are proposed

to improve power, reliability, and yield in cache, memory, and interconnect

levels.

First, in cache level, a low power cache designed called run-time recon-

figurable expandable cache is introduced. Expandable cache proposed by G.

Bournoutian and Orailoglu is very efficient in reducing miss rate and energy

consumption with small area overhead. However, the original expandable

cache with only one expansion scheme may lead to thrashing problems. In

this work, based on the structure of expandable cache, we will introduce a

new cache design which has many expansion schemes to fit different run-time

program behaviors. The expansion scheme of our proposed cache is dynam-

ically changed by executing configuration instructions which are inserted at

compile time. The experimental results of SPEC CPU2000 have shown that

our proposed cache design effectively improves the miss rate by 14.74% as

compared with the original expandable cache. In terms of energy improve-

ment ratio, our method is 5.62% higher than that of expandable cache when

the baseline is set as the energy consumption of 2-way set-associative cache.

Second, a thermal-aware memory mapping technique for 3D designs is

proposed. DRAM is usually used as main memory for program execution.

The thermal behavior of a memory block in a 3D design is affected not only

by the power behavior but also the heat dissipating ability of that block.

The power behavior of a block is related to the applications run on the

system while the heat dissipating ability is determined by the number of

tier and the position the block locates. Therefore, a thermal-aware memory

allocator should consider the following two points. First, allocator should

consider not only the power behavior of a logic block but also the physical

location during memory mapping, second, the changing temperature of a

physical block during execution of programs. In this thesis, we will propose

a memory mapping algorithm taking into consideration the above-mentioned

two points. Our technique can be classified as static thermal management to

be applied to embedded software designs. Experiments show that, for single-

core systems, our method can reduce the temperature of memory system

by 17.1◦C as compared to a straightforward mapping in the best case, and

13.3◦C in average. For systems with 4 cores, the temperature reductions are

9.9◦C and 11.6◦C in average when L1 cache of each core is set to 4KB and

8KB, respectively.

Finally, the recovery of failed TSV is discussed. TSV provides commu-

ii

nication links for dies in vertical direction and is a critical design issue in

3D integration. Just like other components, the fabrication and bonding of

TSVs can fail. A failed TSV can severely increase the cost and decrease

the yield as the number of dies to be stacked increases. A redundant TSV

architecture with reasonable cost is proposed in this thesis. Based on prob-

abilistic models, some interesting findings are reported. First, the number

of failed TSVs in a tier is usually less than 2 when the number of TSVs in

a tier is less than 1000 and less than 5 when the number of TSVs in a tier

is less than 10000. Assuming that there are at most 2∼5 failed TSVs in a

tier. With one redundant TSV allocated to one TSV block, our proposed

structure leads to 90% and 95% recovery rates for TSV blocks of size 50 and

25, respectively. Finally, analysis on overall yield shows that the proposed

design can successfully recover most of the failed chips and increase the yield

of TSV to 99.4%.

iii

Contents

1 Introduction 2

2 Run-Time Reconfiguration of Expandable Cache for Embed-

ded Systems 6

2.1 Observation & Motivation . 9

2.1.1 Expandable Cache . 9

2.1.2 Thrashing of Expandable Cache 11

2.2 Run-Time Reconfigurable Expandable Cache 14

2.3 Software Design Flow . 18

2.3.1 Design Flow . 19

2.3.2 Software Tools in the Design Flow 23

2.4 Experimental Results . 35

2.4.1 Experiment Setup . 35

2.4.2 Experimental Results for Miss Rate and Energy 38

2.4.3 Experiment Results for Test Cases with Different Input

Data . 42

3 Thermal-Aware Memory Mapping in 3D Designs 46

3.1 Observation & Motivation . 48

i

3.2 System Model and Problem Definition 52

3.3 Thermal Driven Memory Address Mapping Algorithm 56

3.3.1 Determination of Candidate Configurations 57

3.3.2 Application Behavior Analysis 63

3.3.3 ILP Formulation for Segment Mapping and Group Con-

figuration . 65

3.4 Experimental Results . 69

3.4.1 Experiments for Single-Core System 70

3.4.2 Experiments for Multi-Core System 73

3.4.3 Experiments for Segment Merging 76

4 TSV Redundancy: Architecture and Design Issues in 3D IC 80

4.1 Previous Work . 82

4.2 Failure Rate Analysis for TSV-Based 3D Designs 83

4.3 Redundant TSV Architecture 89

4.3.1 Architecture Design . 89

4.3.2 Testing Circuits . 92

4.3.3 TSV Block and TSV-Chain 96

4.4 Recovery Rate Analysis . 97

4.5 Comparison with Previous Work 103

4.5.1 Experiment Setup . 103

4.5.2 Comparisons of These Methods 107

4.6 Design Flow and TSV-Chain Design 111

4.6.1 Design Issues for Timing 111

4.6.2 TSV-chain Design Problem 114

ii

4.6.3 Physical Design Flow Considering TSV-Chain 116

5 Conclusion 118

iii

List of Figures

2.1 Dynamically Expandable L1 Cache 10

2.2 (a) Example of Trashing Code; (b) Expansion based on MSB;

(c) Expansion based on LSB 12

2.3 Expansion Hardware . 15

2.4 Insertion Scheme of Configuration Instructions 20

2.5 Design Flow . 21

2.6 Flow Chart of Software Tools in System Simulator 27

2.7 Algorithm for Expansion Scheme Selection 32

2.8 Reduce Expandable Cache to 2-Way Set-Associative Cache . . 36

2.9 D-Cache Miss Rate Improvement Ratio (as compared with 2-

Way Set-Associative Cache) 39

2.10 Access Behavior of Compound Data Structure in Data Cache . 40

2.11 D-Cache Energy Improvement Ratio (as compared with orig-

inal Expandable Cache [2]) . 41

2.12 Miss Rate Improvement Ratios for Test Cases with Multiple

Input Data (SPEC2000, ref) 44

3.1 DRAM Packages on PCB and DRAM Dies in SIP Design . . . 49

iv

3.2 (a) Example Program; (b) Access Frequency; (c) Mapping A;

(d) Mapping B ; (e) Mapping C ; (f) Simulation Result 51

3.3 Memory System . 53

3.4 (a) SIP Model; (b) Floorplan of a Typical DRAM chip 54

3.5 Example for Memory Access 54

3.6 Overall Flow . 56

3.7 Hierarchical View . 57

3.8 Memory Banks of Tier n & Tier n + 1 58

3.9 (a) Configuration I ; (b) Configuration II 59

3.10 (a) Re-mapping Logic; (b) Re-mapping Table; (c) Example . . 61

3.11 Algorithm for Behavior Analysis Algorithm 66

3.12 Comparisons of the Highest Temperature for Single-Core System 71

3.13 Comparisons of the Highest Temperature for Multi-Core Sys-

tem (L1 = 4KB) . 75

3.14 Comparisons of the Highest Temperature for Multi-Core Sys-

tem (L1 = 8KB) . 76

3.15 The Highest Temperature for Different Values of L 77

3.16 The Highest Temperature for Different Values of L when the

Configurations of all Groups are Restricted 77

4.1 Bonding between TSVs and Bond Pads for 2-Tier 3D IC . . . 87

4.2 Yield Analysis: (a) #tier = {2, 5}, #TSV = 300∼1000; (b)

#tier = {2, 5}, #TSV = 1000∼10000 88

4.3 Architecture for Redundancy TSV 90

v

4.4 TSV Recovery Mechanism: TSV 1 is failed and TSV 1, TSV 2,

and TSV 3 are shifted right one position 91

4.5 The Testing Circuits on the Sender End 92

4.6 The Testing Circuits on the Receiver End 93

4.7 TSV Blocks . 97

4.8 The Minimum Values of n for #TSVtier = {300∼10000} (C Ration

> 99.9%) . 99

4.9 Recovery Rate when #TSVtier = 500, n = 2 101

4.10 Limits on #B TSV . 102

4.11 The Overall Yields . 104

4.12 Relation between Output Loading Capacitance and Rise Tran-

sition Time . 107

4.13 Switching Box Implementation in Our Evaluation 108

4.14 All Possible Shifting Situations for a TSV-chain of Size 6 when

1 TSV is Failed . 111

4.15 Evaluation on the Possibility for the Timing Sensitive Signal

to Be Shifted . 113

4.16 Chaining Styles . 115

4.17 Proposed Design Flow for TSV-Chain 117

vi

List of Tables

2.1 L1 Data Cache Structures for Experiments 37

2.2 Overheads of Our Cache Structure 42

3.1 Parameters for Experiments 71

3.2 Workload Combinations . 74

3.3 Computation Time . 79

4.1 Comparison of the Redundant TSV Schemes Proposed in Pre-

vious Work . 83

4.2 TSV Parameters in Our Evaluation 104

4.3 Overheads of Different TSV Structures in Terms of Delay,

Power, and Area (per TSV) 109

1

Chapter 1

Introduction

Modern integration technologies including system in package (SIP) [23] and

through silicon via (TSV) [44] [45] provide many benefits including high

density, high-bandwidth, low power, and small form-factor [46]. With the

capacity provided by these technologies, the number of devices integrated

in a design is greatly increased. More powerful and complex systems can

be developed within small areas. In addition to the advantages brought by

these integration technologies, new challenges are revealed. Increasing the

number of devices in a given area often results in higher power density. This

causes thermal problems which can severely degrade the reliability of modern

electronic systems [30] [32] [33]. Low power architecture design and thermal

management scheme are required. Also, more complex fabrication processes

are required for modern integration technologies. How to improve the yield

is a critical design issue for IC industry. In this dissertation, architecture

designs and optimization technologies are proposed to improve power, relia-

bility, and yield in cache, memory, and interconnect levels.

First, in cache level, a low power cache designed called run-time reconfig-

2

urable expandable cache is introduced. To obtain better power efficiency, L1

cache structures in most embedded systems are direct-mapped as opposed to

set-associative where all lines in a set are activated during one access. More-

over, to further reduce power consumption, the size of L1 cache is limited.

When applications run on embedded systems are simple and regular, direct-

mapped cache is sufficient to provide acceptable behavior. However, when

they are complex and irregular, direct-mapped cache tends to suffer from

thrashing and cache pollution. For example, L. Lee, et al, [1] demonstrate

the thrashing effect caused by MPEG4 codecs which are commonly included

in modern hand-held devices. Note that the increase of L1 miss rate not only

degrades the performance but also increase power consumption due to larger

energy required to access data in L2. According to the experiment done

by G. Bournoutian and A. Orailoglu [2], it may cost 20 times more energy

to access data in L2 than it does in L1. Therefore, simple direct-mapped

cache can no longer satisfy the requirements of modern embedded systems in

terms of performance and power consumption. Expandable cache proposed

by G. Bournoutian and A. Orailoglu [2] is efficient in reducing miss rate and

energy consumption with small area overhead. However, the original expand-

able cache with only one expansion scheme may lead to thrashing problems.

In this thesis, based on the structure of expandable cache, we will introduce a

new cache design which has many expansion schemes to fit different run-time

program behaviors. The expansion schemes of our proposed cache is dynam-

ically changed by executing configuration instructions which are inserted at

compile time.

Second, a thermal-aware memory mapping technique for 3D designs is

3

proposed. With the capacity provided by modern integration technology,

integrating memory chips into package has become popular in recent years.

Several researches on memory integration based on SIP have been studied [25]

[26] [27] [28] [29]. Though modern integration technology provides extremely

high capacity for circuit integration, it suffers severe thermal stress because of

three dimensional stacking of ICs [30]. Thermal stress will induce variation

of DRAM retention time and reliability problem [31]. DRAM is usually

used as main memory for program execution. The thermal behavior of a

memory block in a 3D SIP is affected not only by the power behavior but

also the heat dissipating ability of that block. The power behavior of a block

is related to the applications run on the system while the heat dissipating

ability is determined by the number of tier and the position the block locates.

Therefore, a thermal-aware memory allocator should consider the following

two points. First, allocator should consider not only the power behavior of a

logic block but also the physical location during memory mapping, second,

the changing temperature of a physical block during execution of programs.

In this thesis, we will propose a memory mapping algorithm taking into

consideration the above-mentioned two points.

Finally, the recovery of failed TSV is discussed. TSV provides commu-

nication links for dies in vertical direction and is a critical design issue in

3D integration. Just like other components, the fabrication and bonding of

TSVs can fail [47] [48]. A failed TSV can severely increase the cost and

decrease the yield as the number of dies to be stacked increases. To improve

the yield, some recovery mechanism for faulty TSV is needed. A simple but

effective solution is to add redundant TSVs to replace failed TSVs. A re-

4

dundant TSV architecture with reasonable cost is proposed in this thesis.

Our proposed redundant TSV scheme is scalable and can be adjusted to fit

the failure rate of TSV for different TSV processes and bonding technologies.

Given the failure rate of TSV and the number of TSVs required, probabilistic

models are presented to compute the number of redundant TSVs that should

be allocated so that an expected assembly yield can be achieved. Related

design issues and design flow are discussed. The proposed redundant TSV

design can successfully recover most of the failed chips and increase the yield

to 99% based on probabilistic models.

The organization of this dissertation is as follows. In Chapter 2, to re-

duce the energy consumption in cache level, the structure of run-time re-

configurable expandable cache is presented. In Chapter 3, a thermal-aware

memory mapping technique is introduced to relieve the thermal stress of

memory system in 3D designs. In Chapter 4, a redundant TSV architecture

and related design issues are discussed. Finally, the conclusion is presented

in Chapter 5.

5

Chapter 2

Run-Time Reconfiguration of
Expandable Cache for
Embedded Systems

With the need to execute diverse and complex applications on embedded

systems, the architecture of modern embedded systems is becoming increas-

ingly complicated. Many hardware features such as multilevel caches that

were originally designed for general purpose processors are now found in em-

bedded processors. Although the capability of modern embedded processors

has been greatly improved due to more sophisticated designs, the battery

technology has been developed very slowly over the years. Therefore, the

trade-off between power efficiency and performance is one of the most im-

portant issue to embedded systems.

To obtain better power efficiency, L1 cache structures in most embedded

systems are direct-mapped as opposed to set-associative where all lines in

a set are activated during one access. Moreover, to further reduce power

consumption, the size of L1 cache is limited. When applications run on em-

6

bedded systems are simple and regular, direct-mapped cache is sufficient to

provide acceptable behavior. However, when they are complex and irregu-

lar, direct-mapped cache tends to suffer from thrashing and cache pollution.

For example, L. Lee, et al, [1] demonstrate the thrashing effect caused by

MPEG4 codecs which are commonly included in modern hand-held devices.

Note that the increase of L1 miss rate not only degrades the performance

but also increase power consumption due to larger energy required to access

data in L2. According to the experiment done by G. Bournoutian and A.

Orailoglu [2], it may cost 20 times more energy to access data in L2 than

it does in L1. Therefore, simple direct-mapped cache can no longer satisfy

the requirements of modern embedded systems in terms of performance and

power consumption.

Techniques have been proposed to improve direct-mapped L1 cache. These

techniques can partitioned into two categories depending on whether addi-

tional level of memory is added. In the first category, a high-speed software-

controlled on-chip SRAM called scratchpad memory (SPM) [3] is placed be-

tween processing element and L1 cache. Research has been conducted to

copy highly used code segments, e.g., instructions in loop to SPM for low

power designs [4] [5] [6]. Recently, the use of SPM has been extended to

assign both program and data objects to SPM for energy reduction [7] [8].

Management issues related to the partitioning of SPM and data allocation

have also been studied [9] [10]. Furthermore, the compiler-driven memory

allocation schemes proposed by S. Udayakumaran et al. allows SPM to fully

replace hardware cache [11]. SPM is effective in improving power efficiency

for embedded systems. One feature of SPM is that the data objects to be

7

managed must be in a continuous data block. That is, SPM is good at han-

dling data block in coarse granularity. However, when data to be accessed is

spread out in a large memory space, using SPM can be very in-efficient.

The techniques in the second category focuses on cache design which

allows the data to be processed in the granularity of cache set level. These

techniques can be further classified to two types according to their objectives

and motivations. The first type focuses on miss rate reduction or power effi-

ciency. On-demand selective cache [12], dual data cache [13] and application-

specific partitioned cache [14] are examples. In these techniques, the cache is

divided into multiple partitions. Through run-time memory reference clas-

sification or compile-time program behavior analysis, data sets of different

access behaviors can be stored in different cache partitions. Although these

techniques lead to lower miss rate, they cannot be extended easily for com-

plex, algorithmically intensive applications.

In the second type, techniques such as victim cache [15], pseudo-associative

cache [16], and expandable cache [2] mimic the designs of set-associative cache

to handle cache conflict problems by adding extra storage blocks or additional

control logic. Among these techniques, expandable cache incurs relatively

small area overhead and increases power-efficiency significantly. However,

the original expandable cache with only one expansion scheme may lead to

thrashing problems. In this work, based on the structure of expandable cache,

we will introduce a new cache design which has many expansion schemes to

fit different run-time program behaviors. The expansion scheme of our pro-

posed cache is dynamically changed by executing configuration instructions

which are inserted at compile time. The proposed method can be used in

8

high-volume embedded systems where the processor architectures are devel-

oped for specific applications and the instruction sets can be extended.

The rest of this chapter is organized as follows. Section 2.1 reviews the

structure of expandable cache and gives the motivation of this work. In

Section 2.2, our proposed cache design is presented. Next, the design flow and

the required software tools are introduced in Section 2.3. The experimental

results are presented in Section 2.4.

2.1 Observation & Motivation

In Section 2.1.1, expandable cache is introduced first. Then, in Section 2.1.2,

we point out that expandable cache is not optimal by examples and discuss

the properties that a newly designed cache should have in order to fully make

use of the concept of expandable cache.

2.1.1 Expandable Cache

For a direct-mapped cache, when multiple data blocks with identical set

indices are accessed in the same period, only one of them can exist in the

cache. This results in conflict misses. To prevent cache conflict problem

described above, some modification must be made to allow more than one

data blocks with the same set indices to be stored in a cache. Expandable

cache shown in Figure 2.1 proposed in [2] allows the expansion of each cache

set into a secondary cache set. Therefore, two data blocks with the same set

indices can be stored in the cache simultaneously. The circular list shown at

the lower-right of Figure 2.1 records the indices of the sets which are most

recently evicted. When a cache miss occurs and the index of the accessed set

9

Primary Set

...

Secondary Set

1 0

L1 Cache

tag, data, dirty, etc toggle bit
expand bit

Processor

evicted set index

Circular List

L2 Cache
or

Main Memory

Figure 2.1: Dynamically Expandable L1 Cache

is already presented in the circular list, it implies that the current set is in

a probable state of thrashing and should be expanded. To expand a set, the

expand bit of the set is turned on. The index of secondary set is obtained by

flipping the Most Significant Bit (MSB) of primary index.

During the execution, on a cache miss, if the expand bit is enabled, a

secondary set is accessed on the next cycle. The toggle bit of a set is disabled

whenever a hit occurs on the primary set and enabled whenever a hit occurs

on the secondary set. This encodes Most Recently Used (MRU) scheme and

determines whether primary or secondary set should be accessed first. If both

primary and secondary sets result in cache misses, then one of these two sets

needs to be selected as the evicted set and moved out from the cache. The

toggle bit also determines which set should be evicted on a cache miss.

By adding minimal amount of extra storage, expandable cache allows each

access to re-lookup into a predefined secondary set. This mechanism doubles

10

the size of a set without doubling the hardware. The major concern of this

cache structure is whether the expansion of a set may cause a conflict problem

of the secondary set which contains some data in use. In [2], the secondary

set is chosen by flipping the MSB of the set index and hence is located at the

farthest distance from the primary set. This solution is an intuitive choice

based on the principle of locality, i.e., the data in the farthest distance may

not be used immediately. However, due to the complexity and the irregularity

of modern embedded applications, this expansion may not always be optimal.

Furthermore, the lack of ability to prevent a primary set to be expanded to

the secondary set that contains frequently used data may result in a higher

miss rate as compared with the non-expandable cache.

2.1.2 Thrashing of Expandable Cache

In this section, a simplified example is given to show that using MSB for

cache expansion proposed in [2] may not be optimal. The code given in

Figure 2.2(a) contains six arrays which map to a direct-mapped cache with 8

sets. The mapping relation between arrays and sets is shown in Figure 2.2(b)

and (c). For a given i range, the sets in white background are active sets

while those in gray background are currently unused sets. The lines with

arrow depict the expanding relations of each primary and secondary set pair

where tail represents primary set and heads its secondary set. When MSB

is used for expansion and i is between 0 to 7, the left part of Figure 2.2(b)

illustrates the conflicting situation. Since both arrays A and E are mapped

to set 000, the set is expanded to set 100 by flipping MSB. However, set 100

contains the data of array C which is also in use. Therefore, the thrashing

11

int A[16], B[16], C[16];
int D[16], E[16], F[16];

For(int i = 0; i < 16; i++)
{

A[i] = B[i] + C[i];
D[i] = E[i] + F[i];

}

A[0 7] E[0..7]
A[8 15] E[8...15]
B[0 7] F[0...7]
B[8..15] F[8...15]
C[0...7]
C[8...15]
D[0...7]
D[8...15]

000
001
010
011
100
101
110
111

set
index

data mapped to
each set

A[0 7] E[0 7]
A[8 15] E[8 15]
B[0 7] F[0...7]
B[8..15] F[8...15]
C[0...7]
C[8...15]
D[0...7]
D[8...15]

000
001
010
011
100
101
110
111

set
index

data mapped to
each set

000
001
010
011
100
101
110
111

set
index

data mapped to
each set

000
001
010
011
100
101
110
111

set
index

data mapped to
each set

when i = 0 ~ 7 when i = 8 ~ 15

when i = 0 ~ 7 when i = 8 ~ 15

(a) (b)

(c)

A[0 7] E[0 7]
A[8 15] E[8 15]
B[0 7] F[0...7]
B[8..15] F[8...15]
C[0...7]
C[8...15]
D[0...7]
D[8...15]

A[0 7] E[0..7]
A[8 15] E[8...15]
B[0 7] F[0...7]
B[8..15] F[8...15]
C[0...7]
C[8...15]
D[0...7]
D[8...15]

Figure 2.2: (a) Example of Trashing Code; (b) Expansion based on MSB;
(c) Expansion based on LSB

12

problem occurs. The same situation happens with sets 010 and 110. Even

when i changes its value to the range of 8 to 15, the problems are equally

serious as shown on the right part of Figure 2.2(b). In this example, we

found that though half of the sets are inactive, using MSB for expansion

causes serious conflict problem. On the contrary, using Least Significant Bit

(LSB) for expansion provides a very good expansion scheme by fully utilizing

inactive sets as shown in Figure 2.2(c). Nevertheless, expansion using LSB

may not be a good choice for other applications. For different applications

or program segments, the optimal expanding schemes can be very different.

Therefore, we propose in this chapter to have dynamic expansion scheme

that is configurable during the execution of different applications or program

segments.

In fact, the complexity and the irregularity of modern embedded appli-

cations highly disturb the locality of data access. For example, instead of

accessing an array of integers sequentially, it is common for a program seg-

ment to traverse an array of large structures where only a fixed data field

of each structure needs to be accessed. This situation can also be found

in multi-dimensional arrays, where access is not based on the index of the

last dimension. Moreover, a set containing variables which are accessed with

extremely high frequencies in a program should never be allowed to be used

as a secondary set. To fully utilize the concept of expandable cache, a more

flexible expanding mechanism is required. In the best case, we should

always select inactive sets as secondary sets. To these ends, the desired

properties of an expandable cache are listed as follows:

• The cache should have the ability to prevent any frequently accessed

13

set from becoming a secondary set.

• The expansion scheme is configurable to fit different program segments

dynamically.

• The hardware for expansion should be simple and flexible enough to

execute a number of expansion schemes.

2.2 Run-Time Reconfigurable Expandable Cache

Over a short execution interval, the percentage of sets that contain data to be

reused recently in a cache is often less than 50%. This means that in normal

situation, there should be sufficient unused sets to be used for set expansion.

Based on the motivation described in Section 2.1.2, the optimal expansion

scheme is to expand an active set to an unused secondary set. However,

this simple strategy is impossible to be carried out due to the unpredictable

irregular distribution of active and inactive sets in a cache. Even if the

distribution of active and inactive sets can be predicted, the hardware to

execute different expansion schemes may be too expensive. Furthermore,

the desired expansion scheme may need to change very often to fit different

applications or execution stages. Thus, we consider only expansion schemes

that incur small area and power overhead.

The limitation of expandable cache [2] is that only MSB is used to deter-

mine the secondary set. Hence, the first improvement to expandable cache

is to allow any bit of the set index to be flipped to obtain the secondary

set. Next, to cope with the increasing complexity and irregularity of modern

embedded software, more than one bit is allowed to be flipped. Based on the

14

0 0 1 1 1 0 1 1

1 0 1 1 0 0 1 1

1 0 0 0 1 0 0 0

primary set index

secondary set index

Secondary Set

...
Primary Set

L1 D-Cache

tag, data, dirty, etc toggle bit
expand bit

bit 0bit 1bit 2bit 3bit 4bit 5bit 6bit 7

1 0

reconfigurable expanding mask

Figure 2.3: Expansion Hardware

discussion above, the expansion hardware shown in Figure 2.3 is proposed

for our cache design. In this expansion hardware, we have a register to store

the reconfigurable expanding mask which is used to map a primary set index

to its secondary set index by XOR operations. In this design, only a register

and a small number of XOR gates are added. For example, when the value

of reconfigurable expanding mask is equal to 10001000 where bit 7 and bit

3 are set to 1, the index of secondary set is obtained by flipping bit 7 and

bit 3 of the primary set index. Thus, given a primary set, set 10110011, the

secondary set is computed as set 00111011. The cache structure on the right

part of Figure 2.3 is similar to that of expandable cache. Both expand bit and

toggle bit in the original design [2] are preserved in our cache design. The

expand bit of a set indicates whether the set is expanded and the toggle bit

which encodes an MRU scheme determines which set should be accessed first

and which set should be evicted on a cache miss.

The circular list in the original expandable cache [2] which is used for

15

automatic set expansion is removed since it is no longer sufficient to handle

the complex expansion problem. Instead, a number of new instructions used

for set expansion are defined as follows for the new architecture.

• set expand bit X ;

Enable the expand bit of set X .

• clear expand bit X ;

Disable the expand bit of set X .

• set expand mask M ;

Load reconfigurable expanding mask with M .

• clear all expand bits;

Disable the expand bits of all sets in the cache.

Through insertion of these instructions in a program, the expanding and

recovering of each set can be controlled at compile time and therefore becomes

more flexible. By loading reconfigurable expanding mask with different values,

various expansion schemes can be implemented.

To reduce inserted instruction count, instructions set expand bit X and

clear expand bit are extended to allow expand bits of multiple sets to be

enabled or disabled in one instruction. Two more instructions are defined as

follows.

• c set expand bit X, d, n ;

This instruction takes n + 1 cycles for execution. A register, s , is

required to store the index of the set to be expanded. In the first cycle,

the value of X is loaded into register s . In the following n cycles,

16

The value of s is increased by d . For example, executing instruction

“c set expand bit 101, 8, 2” causes the expand bits of sets 101,

109, and 117 to be enabled.

• c clear expand bit X, d, n ;

The operation of this instruction is similar to instruction

c set expand bit X, d, n. Instead of enabling the expand bits of

sets, this instruction disables expand bits.

The two instructions introduced above are efficient in reducing the static in-

struction count which is critical for embedded systems. However, the number

of cycles required to enable or disable sets remain unchanged.

Now we discuss the overhead incurred by our scheme. The first one

is power consumption. The flip-flops in Figure 2.3 are set when instruction

set expand mask M is executed. Power consumption of these instructions

is increased only when flip-flops are written. According to experiments, the

execution frequency of this instruction is less than 0.1%. The power impact

is low. In normal execution mode, flip-flops remain constant and only power

of XOR gates are incurred. The gate count of a modern embedded processor

such as ARM926EJ-S is around 0.16M ∼ 0.18M where the power consump-

tion is around 0.235mW/MHz under 90nm technology [17]. The worst case

power consumption of an XOR gate under the same process technology is

around 30nW (including static and dynamic power). The power consumption

of these XOR gates is insignificant. As for timing issue, our approach will

increase the critical path delay for at most one XOR gate delay. However, in

modern pipeline processors, the performance bottleneck is often found in the

17

stage of register file access due to the increasing number of registers and the

requirement of multi-port access [18] [19]. Our proposed expansion hardware

is added to L1 data cache in the stage of memory access. Therefore, the

overall system performance will not degrade. Lastly, since all operations for

cache expansion are done through instruction level commands, there will be

extra number of static and dynamic instruction counts added to programs.

2.3 Software Design Flow

In this section, the overall design flow is presented in Section 2.3.1. Then, the

software tools in our design flow are introduced in Section2.3.2 with details.

Before our presentation, following terms are defined.

code segment: A code segment is a sequence of static code instructions in

a loop or a function. Multiple code segments can be nested with one

another.

interval: An interval refers to a period time that the instructions of a code

segment are executed. For a given code segment, multiple intervals can

be defined based on the execution flow of a program.

expansion scheme: For a given interval, the values of expanding mask and

the expand bits of all cache sets are referred as the expansion scheme

of that interval.

coverage ratio: To setup the values of expanding mask and the expand bit

of each cache set, configuration instructions need to be executed. These

18

configuration instructions lead to overhead in terms of static and dy-

namic instruction counts. The overhead of selecting expansion schemes

of all intervals can be very large. Therefore, for given a code segment

and all its intervals, only a limited number of expansion schemes are

selected. An interval to have its own expansion scheme selected is

called a covered interval. For a given code segment, the term coverage

ratio is defined as the execution cycle count of the covered intervals

divided by the execution cycle count of all intervals. We expect the

value of coverage ratio of code segment to be larger than a used defined

coverage ratio.

2.3.1 Design Flow

In our proposed architecture, configuration instructions are inserted in com-

pile time. An example is depicted in Figure 2.4. The code structure of the

original program is shown in the left part of Figure 2.4. According to the

execution flow, the program is partitioned into three code segments, code seg-

ments A, B, and C. For different code segments, different program behaviors

are observed and different expansion schemes of expandable cache are re-

quired. To allow different expansion schemes to be configured, configuration

instructions are inserted prior to each code segments, as shown in the right

part of Figure 2.4. For programs with complicated behaviors, a code seg-

ment may require different expansion schemes over different intervals. For

example, code segment C in Figure 2.4 requires different expansion schemes

for i = 1 ∼ 5000 and i = 5001 ∼ 10000, respectively. In this case, the code

segment is duplicated and different configuration instructions are inserted.

19

// segment A
while(){

...
}

// segment B
for(){

...
}

// segment C
for(i = 1 ~ 10000){

...
}

P
rogram

 E
xecution Flow

Configuration Instructions

// segment A
while(){

...
}

// segment B
for(){

...
}

// segment C.1
for(i = 1 ~ 5000){

...
}

// segment C.2
for(i = 5001 ~ 10000){

...
}

Configuration Instructions

Configuration Instructions

Configuration Instructions

Original Program

Program with Configuration
Instructions

Figure 2.4: Insertion Scheme of Configuration Instructions

20

Cache Profiler: determine
intervals for interval analyzer

S
ys

te
m

 s
im

ul
at

or

Candidate expansion schemes
for each interval

Expansion Scheme Selector: for each code
segment, a number of expansion schemes are
selected from candidate expansion schemes

Code with inserted instructions for cache
expansion

Code to be run on the system

Program Structure Analyzer: determine
code segments for cache profiler

Interval Analyzer: find candidate
expansion schemes of all sets for a

given interval

Post-Compiler for Instruction Insertion: for
each selected expansion scheme, required

configuration instructions are generated and
inserted into the original code

Figure 2.5: Design Flow

21

To realize the proposed instruction insertion scheme, four steps are designed

at software level and listed as follows:

• Determine code segments

The configuration instructions for cache expansion cannot be inserted in

a program execution flow arbitrarily. Program structure and execution

flow need to be considered. Program structure analyzer is developed

to find candidate positions such as entry points to loops and functions

for instruction insertion. Bodies of loops and functions are identified

as possible code segments for cache expansion.

• Determine the intervals for different expansion schemes in a

code segment

For each code segment, different expansion schemes may be required

for different intervals or different execution stages. Cache profiler is

designed to determine intervals during the execution of code segments.

The sizes of the intervals for a code segment need not to be identical.

Based on the profiling data collected by cache profiler during simula-

tion, intervals of different sizes are allowed. The details of determining

an interval is explained in Section 2.3.2. Whenever an interval is found,

interval analyzer is invoked.

• Find the candidate expansion schemes for a given interval

For each interval determined by cache profiler, a number of candidate

expansion schemes leading to minimal cache misses are determined by

interval analyzer. Cache profiler and interval analyzer are invoked

iteratively till the simulation of the whole program is completed.

22

• Select expansion schemes and insert configuration instruc-

tions

For each code segments, expansion scheme selector is developed to se-

lect a number expansion schemes from the candidate expansion schemes

in order to reduce the amount of inserted instructions and duplicated

codes. Next, the configuration instructions for the selected expansion

schemes are generated and inserted into the original code by a post-

compiler.

The overall design flow is depicted in Figure 2.5. Program structure ana-

lyzer, expansion scheme selector, and post-compiler for instruction insertion

are implemented as program modules and are invoked by user individually.

Cache profiler and interval analyzer are implemented inside the system sim-

ulator and are invoked automatically during the simulation. The dedicated

description is presented in Section 2.3.2.

2.3.2 Software Tools in the Design Flow

This section introduces the software tools required for our design flow. First,

program structure analyzer is introduced in Section 2.3.2. Cache profiler is

introduced in Section 2.3.2. The algorithm for interval analyzer is explained

in Section 2.3.2. Expansion scheme selector is presented in Section 2.3.2.

Configuration instruction insertion for cache expansions is described in Sec-

tion 2.3.2. Finally, the complexity and the efficiency of the proposed software

flow is discussed in Section 2.3.2.

23

Program Structure Analyzer

Program structure analyzer is developed to analyze the execution flow of

each program. Candidate positions for instruction insertion are the entry

points to loops and functions. These positions are identified by analyzing

branch instructions. According to the type and target address of each branch

instruction, code segments of loops and functions are determined. Note that

different code segments can be nested to each other. The analysis in this

stage is static.

Cache Profiler

Cache profiler is embedded in a system simulator. The main objective of

cache profiler is to find intervals which need new cache expansion schemes

inside each code segment. During the simulation, whenever a code segment is

entered, the cache profiler is invoked to initiate a new set of profiling data.

While the simulator leaves the code segment, the collection of profiling data

for this code segment is ended. Multiple sets of profiles may be maintained

at the same time due to the nested structure of code segments. Run-time

information such as execution count and execution duration of each code

segment are recorded. This information is required in expansion scheme

selection and configuration instruction insertion stages.

Before we start to design the procedure, it is necessary to understand

when a set is worth expanding. That is, when expanding a set into its

secondary set, the total miss count should be truly reduced. This problem

can be discussed from two aspects. First, we need to precisely know whether

a set suffers cache conflict problem. Second, we need to know whether a

24

secondary set can be found. For a given interval, both these two problems

can be answered according to the values of miss count and reference count.

If a set suffers from thrashing, the miss count must be relatively large. As

for the second problem, a set with high reference count is not a suitable

secondary set. Making such a set a secondary set may induce a large number

of additional cache misses. Thus, from the above observations, it is preferable

to expand a set with high miss count to a secondary set with small reference

count.

As to interval determination, when the number of sets with high miss

count is no greater than the number of sets with low reference count, it can

be considered a suitable interval for cache expansion since there are suffi-

cient sets to become secondary sets. If the interval is short, this condition

can be easily satisfied. However, considering the overhead of extra instruc-

tions inserted for each interval, the interval should be as large as possible.

Nevertheless, as the interval becomes larger, the number of sets with high

miss count increases and the number of sets with low reference count de-

creases.

Hence, in our algorithm, the following steps are performed to decide

whether an interval is reached. First, average-miss-count and average-reference-

count are defined as the averages of miss counts and reference count of all

sets, respectively. Second, miss count of a set greater than average-miss-

count is defined as high-miss-count and otherwise as low-miss-count. Sim-

ilarly, high-reference-count and low-reference-count are defined. Then, two

thresholds, upper bound#high miss sets and lower bound#low ref sets, are given

as the upper bound of the number of sets with high-miss-count and the lower

25

bound of the number of sets with low-reference-count. Whenever the number

of sets with high-miss-count becomes larger than upper bound#high miss sets

or the number of sets with low-reference-count becomes smaller than

lower bound#low ref sets, the interval should not be further extended.

As for selecting the values of upper bound#high miss sets and

lower bound#low ref sets, the following experiment is performed. In the ideal

case, the number of sets with high-miss-count is equal to the number of sets

with low-reference-count and each set with high-miss-count is expanded to a

set with low-reference-count. In this case, the numbers of sets with high-miss-

count and that with low-reference-count are equal to 50% of the total number

of sets. The value of lower bound#low ref sets is set using the above men-

tioned analysis. Then, with the value of lower bound#low ref sets set to 50%

of the total number of sets, experiments are conducted for different values

of upper bound#high miss sets. Thus, the value of upper bound#high miss sets

starts from 50% and decreases at intervals of 5% for each trial. Based on

experimental results, setting the value of upper bound#high miss sets to 30%

of the total number of sets is beneficial for most test cases. These values are

fixed in all experiments in Section 2.4.

The algorithm implemented in cache profiler is depicted in Figure 2.6 and

described as follows. In order to run cache profiler robustly, we define mini-

mum interval which is the shortest interval to be analyzed for an expansion

scheme and base interval which is the size of an interval to be extended and

checked periodically. Minimum interval is to guarantee that the change of

expansion scheme is at a frequency less than 1
minimum interval

and thus limits

the number of added instructions. During simulation, cache profiler keeps

26

Perform simulation until I
minimum interval

Reset Cache Profiler for a new
interval, I

Cache Profiler

Analyze interval I and find
candidate expansion schemes

Interval Analyzer

Output no expansion scheme for
current interval, I

miss count and
reference count of all sets

are very similar?

yes

no

Perform simulation for next base
interval

yes

no

Conditions for interval
analysis is met or

I > maximum interval?

Figure 2.6: Flow Chart of Software Tools in System Simulator

27

track the reference count and miss count of each set. First, when a simula-

tion range is greater than or equal to minimum interval, the profiler calls an

inspector to inspect collected data. If miss count and reference count of all

sets are very similar, the profiler determines that no expansion to be made

for current interval and starts a new iteration of profile. Otherwise, the pro-

filer checks whether the number of sets with high-miss-count is larger than

upper bound#high miss sets or the number of sets with low-reference-count is

smaller than lower bound#low ref sets. If any of these two conditions is true,

cache profiler stops extending current interval and interval analyzer (de-

scribed in Section 2.3.2) is invoked to determine expansion schemes. To

prevent the interval from growing too large, maximum interval is also de-

fined. If maximum interval is reached, interval analyzer is invoked, too.

Otherwise, simulation for the next base interval is preformed to extend the

current interval.

Interval Analyzer

After each interval is recognized, interval analyzer is invoked to determine

the candidate expansion schemes. In Section 2.3.2, we pointed out that it

is preferable to expand a set with high-miss-count to a secondary set with

low-reference-count. We would like to compute the gain of different kinds of

expansions. For each reconfigurable expanding mask, we define its gain func-

tion, MaskGain. Before we define MaskGain of a reconfigurable expanding

mask, we define the gain function of a set, SetGain, in this configuration.

For a set, since the expected miss reduction is bounded by miss count of

primary set, P , and reference count of its secondary set, S, we define the

28

gain of a set as

SetGain(P) = miss count(P)− reference count(S).

If a SetGain becomes negative, we set it to zero. This implies that, if the

configuration is adopted, the expand bit of set P is disabled and the cache

miss reduction of this set is zero. Then, for a given value, V , of reconfigurable

expanding mask, MaskGain is computed as

MaskGain(V) =
2n−1∑

P=0

SetGain(P),

where n is the bit-length of set index. The interval analyzer computes

the MaskGains of all possible values of reconfigurable expanding mask and

records the best 20% of them. In later expansion scheme selection stage, the

exact expansion schemes for a given code segment are selected from these

candidate expansion schemes taking into consideration the increase in code

size.

Expansion Scheme Selector

For each static code segment determined by program structure analyzer in-

troduced in Section 2.3.2, one or more intervals are analyzed for candidate

expansion schemes by interval analyzer introduced in Section 2.3.2. Theo-

retically, it is possible to configure the best expansion masks for all intervals

through compiler techniques such as loop unrolling and code duplication.

However, this may result in undesired growth of code size. Therefore, some

policy is required to determine whether compiler techniques should be applied

to insert configuration instructions for different intervals of a code segment.

29

Two selection algorithms are proposed to select expansion configurations

in a static code segment. The first technique is proposed to handle nested code

structures such as nested loops. Take a 2-level nested loop as an example. For

each interval determined by cache profiler introduced in Section 2.3.2, the

number of dynamic instruction count is recorded to estimate the execution

time of that interval. Let the execution time of the inner and outer loops

be denoted as Tinner and Touter, respectively. If (Tinner)/(Touter − Tinner) is

greater than a predefined threshold value, τ , the expansion schemes of the

outer loop are discarded. In this case, the configuration instructions required

by the inner loop can be moved to the entry point of the outer loop to reduce

the overhead of dynamic instruction count. Otherwise, the expansion scheme

of the outer loop is taken and the expansion scheme of the inner loop is

discarded. In our experiments, τ is set to 100.

The second technique is used when different expansion schemes are re-

quired for one static code segment over different intervals. For this kind of

execution flow, the algorithm presented in Figure 2.7 is developed for expan-

sion scheme selection. The input of the algorithm contains a set of intervals

which are required for one static code segment. For each interval, a set of can-

didate expansion schemes are recorded in the step of interval analysis. The

output of the algorithm is a set of selected candidate expansion schemes. The

detailed execution flow of the proposed algorithm is explained as follows.

Set I contains all intervals of a static code segment. Set all scheme is

the candidate expansion schemes of all intervals in set I. Let γ stand for

the used defined coverage ratio and n for the maximum number of selected

expansion schemes. Figure 2.7 shows the algorithm. Let S stand for the

30

set of expansion schemes that are selected. At first, set S is initialized to

an empty set (Line 1). In each iteration of the while loop (Line 3-14), for

each expansion scheme, the summation of the gain function developed in

Section 2.3.2, mask gain(), for all intervals in I are computed (Line 5-6).

The best expansion scheme is selected (Line 7). Then, all intervals that are

covered by the selected expansion scheme are removed from set I (Line 9-11).

The while loop stops when the coverage ratio is larger than γ or the number

of selected expansion schemes reaches n. In general, a larger γ is beneficial

for cache miss reduction. However, it results in large number of expansion

schemes and increases the number of static instruction count. Experiments

are conducted to select the value of γ. We found that when coverage ratio is

larger than 90% or the number of selected expansion schemes is larger than

8, the increase of coverage ratio due to a newly included expansion scheme

becomes very small (< 3%). Therefore, in our experiments, γ and n are set

to 90% and 8, respectively.

Configuration Instruction Insertion

After the exact expansion scheme of each interval is determined, the next

step is to determine the configuration instructions to be inserted. For a given

interval and its expansion scheme, the instruction “set expand mask M ”

is always required unless the value of M for the current interval is iden-

tical to that of the previous interval. Next, instructions to configure the

expand bit of each set are inserted. To achieve the desired configuration,

we can either use “clear all expand bits” instruction to disable all bits

and then use “set expand bit X ” instruction to enable bits, or we can

31

Algorithm: program Expansion Scheme Selection()

Inputs:
I : A set of intervals for a given code segment.
all schemes : All candidate expansion schemes of the intervals in I.
γ : The used defined coverage ratio.
n : The maximum number of selected expansion schemes.

Output:
S : A set of selected expansion schemes.

1 S = φ
2
3 while(current coverage ratio < γ AND #selected expansion schemes ≤ n)
4 {
5 for each expansion scheme c in all schemes, do
6 total mask gain(c) = the mask gain(c) for all intervals in I ;
7 best scheme = the expansion scheme with best total mask gain(c);
8
9 for each interval i in I, do
10 if(best scheme is a candidate expansion scheme of i)
11 remove i from I ;
12
13 add best scheme to S ;
14 }
15
16 return S ;

Figure 2.7: Algorithm for Expansion Scheme Selection

32

use “set expand bit X ” and “clear expand bit X ” instructions to mod-

ify the configuration of the previous interval. The instruction count for the

first method is equal to 1 plus the number of bits to be enabled. The in-

struction count for the second method is equal to the number of bits to

be modified. The one with fewer instruction count is selected as our so-

lution. Then, extended instructions, “c set expand bit X, d, n” and

“c clear expand bit X, d, n”, are used to reduce static instruction count

by replacing multiple “set expand bit X ” or “clear expand bit X ” in-

structions.

Complexity and Efficiency of the Proposed Software Design Flow

SimpleScalar [20] is used as our system simulator and 17 programs from CPU

SPEC2000 [21] benchmark suite are selected as test cases. For nine test cases,

the time required for system simulation is less than 4 hours on a desktop

with a 3.2GHz dual-core processor. For seven test cases, the simulation time

ranges from 6 to 12 hours. One test case, 188.ammp, requires 15 hours for

the simulation to complete. System simulation is the bottleneck in terms of

run time. In our proposed software design flow, cache profiler and interval

analyzer are incorporated into a system simulator and invoked iteratively.

The increase of simulation time due to cache profiler and interval analyzer

is analyzed as follows.

During the simulation, cache profiler needs to maintain the values of

average-reference-count and average-miss-count so that the values of

#low ref sets and #high miss sets can be determined. For each set, two

counters are maintained to provide miss-count and reference-count locally.

33

One average-reference-count counter and one average-miss-count counter are

also maintained globally. For each reference to cache, these counters are

updated.

Next, the complexity of interval analyzer is discussed. For a cache with

n-bit set index, the number of sets in the cache is 2n. For a given value

of reconfigurable expanding mask, 2n substraction and branch operations are

required to compute the SetGains of all sets. Then, (2n − 1) addition op-

erations are performed to compute MaskGain(V). Since the the number of

possible values of reconfigurable expanding mask is 2n−1, the complexity can

be denoted as

O(((2 · 2n) + (2n − 1)) · (2n − 1)) = O(22n).

Although the complexity of interval analyzer is exponential, the value of n

is usually no greater than 10 in L1 cache of a modern embedded processor.

When n = 8, one run of interval analyzer takes less than 1ms.

Experiments are conducted to observe the increase of simulation time

when cache profiler and interval analyzer are incorporated into the system

simulator where n is set to 8. When only cache profiler is incorporated into

the system simulator, the simulation time is increased by 0.17% in average.

When both cache profiler and interval analyzer are incorporated, the sim-

ulation time is increased by 6.84% in average. As compared with the time

required for system simulation, the time require by the cache profiler and

interval analyzer is insignificant.

34

2.4 Experimental Results

In this section, experiments are conducted to evaluate the effectiveness of

our proposed cache structure and software design flow. In Section 2.4.1, the

setup of our experiments is explained. In Section 2.4.2, experimental results

for test cases selected from SPEC CPU2000 [21] are reported. Finally, in

Section 2.4.3, experiments are conducted to observe the miss rate of the

proposed cache structure when different input files are fed to each test case.

2.4.1 Experiment Setup

The cache structure presented in this work is proposed to allow complicated

applications to be executed efficiently on embedded systems. Test cases with

large input data and complicated behaviors are desired. For this purpose, test

cases from SPEC CPU2000 [21] benchmark suite are selected. SimpleScalar

toolset [20] incorporated with cache profiler and interval analyzer is used

for system simulation. A 32-bit processor with in-order, single-issue, and

separate instruction and data caches is assumed.

In the original expandable cache [2], expand bits need to be cleared to flush

or reset the cache. Without cache flush or reset mechanism, expand bits of

all cache entries will be enabled all the way to the end. Clearing expand bits

(cache flush or reset) is an important step in the original expandable cache to

determine the performance. However, the conditions of cache flush or reset

are not defined in the previous work [2]. We could not exactly reproduce the

experimental results [2]. Therefore, we take a more rigorous comparison: miss

rate of 2-way set-associative cache and the energy consumption of the original

35

A1

A3
A4

...

B2
B3

0
0
0
1

0
0

0
0
0
1

0
0

1B1

A2

B4

...

1 0

1

00...000
00...001
00...010
00...011

10...000
10...001
10...010
10...011

tag, data, dirty, etc toggle bit
expand bit

n bits

setsn2

A1

A3
A4

...

B2
B3

0
0
0
1

0
0

0
0
0
1

0
0

1B1
A2

B4

...

1 0

100...000
00...001
00...010
00...011

10...000
10...001
10...010
10...011

A1

A3
A4

...

A2
0...000
0...001
0...010
0...011

B1

B3
B4

...

B2

expandable cache with sets

re-map sets of expandable cache based on MSB expansion scheme

n - 1 bits

setsn 12

n2

2-way set-associative cache
with sets12n

Figure 2.8: Reduce Expandable Cache to 2-Way Set-Associative Cache

36

Table 2.1: L1 Data Cache Structures for Experiments

Cache 2-Way Set-Associative Cache Our Proposed
Parameters (≈Expandable Cache) Cache Structure

Cache Size 8 KB 8 KB

Line Size 32-byte 32-byte

Set Number 128 256

expandable cache are assumed. The miss rate of the original expandable

cache [2] can never be better than that of a 2-way set-associative cache

where the number of sets is halved. This can be explained by Figure 2.8.

Since MSB is used to determine the secondary set, we can view the lower half

sets of the original direct-mapped cache as the second-way of a 2-way set-

associative cache. The major difference is that instead of accessing two sets

associatively, expandable cache accesses these sets one at a time based on the

structure of direct-mapped cache. In terms of power efficiency, expandable

cache is superior because only one set is accessed each time. The miss rate

of 2-way set-associative cache is the lower bound of that of expandable cache.

Therefore, we take the miss rate of 2-way set-associative cache to represent

that of expandable cache for comparison. The L1 cache structures used in our

experiments are summarized in Table 2.1. With 8 KB cache size and 32-byte

line size, our proposed cache have 256 sets while 2-way set-associative cache

has 128 sets.

In addition to miss rate reduction, the energy usage improvements on

data cache is also reported. Since the energy usage improvement of this

work is based on L1 cache miss reduction, we need to define the structure of

L2 cache so that the energy ratio of accessing data in L1 to L2 can be known.

37

Similar to [2], L2 was assumed to be 256 KB with 4-way set-associative and

64-byte line size. The feature size of the hardware is assumed to be 65nm.

By using CACTI [22], the energy required to access data in L2 is 20 times

more than that to L1. Based on this ratio, the energy consumed can be

defined as

Ecache = Eunit × (AccessCount+ δ)

+ 20 · Eunit ×MissCountL1

where Eunit represents the energy required to access data in L1 and δ repre-

sents the extra access count for expanded sets. According to our experiments,

the value of δ is found to be between 3%∼8% of the total data cache access

count for all test cases.

2.4.2 Experimental Results for Miss Rate and Energy

In this section, 17 test cases are selected from SPEC CPU2000 and input

files in train data set are used. Train data set is designed for profile-driven

compiler optimizations and can be viewed as the representative data set of

ref data set. For each test case, identical input file is used for configuration

search in the proposed software design flow and performance evaluation in

experiments. Therefore, the obtained expansion schemes are optimized for

the input file in each test case. In Figure 2.9, the improvements in terms

of miss rate reduction ratio (as compared with the miss rate of expandable

cache) are first reported. In average, our proposed method leads to 14.74%

improvement. In following analysis, we focus on the test cases with larger

improvement ratios (more than 10%).

38

55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%

M
iss

Ra
te

Im
pr
ov
.R
at
io

Test Case (SPEC2000, train)

Figure 2.9: D-Cache Miss Rate Improvement Ratio (as compared with 2-Way
Set-Associative Cache)

In test case, parser, a large number of sequential data segments are

spread out all over the memory address space. Each of these segments is

mapped to a number of consecutive sets in data cache. During the execu-

tion, multiple data segments are accessed simultaneously. When these data

segments are mapped to cache sets, they may overlap with one another.

A single expansion scheme proposed in the original expandable cache is in-

sufficient in resolving the confliction among these data segments. On the

contrary, our proposed cache structure is capable of expanding conflicting

sets to temporarily unused sets through various expansion schemes. Similar

execution condition can also be observed in test cases, equake and vortex.

We also observed that compound data structures are widely used in test

case, vortex. When compound data structures are used, each data object

may be mapped to multiple sets in data cache. An example is depicted in

Figure 2.10. In Figure 2.10, a compound data type named INFO is defined

39

id of array[0]
struct INFO {

int id;

};

struct INFO array[100];

id of array[1]

id of array[2]

...
...

ac
ce

ss
 b

eh
av

io
r

temporarily
unused sets

Figure 2.10: Access Behavior of Compound Data Structure in Data Cache

and an array is declared. Assume that the size of each data object is three

times the size of a set. Then, the data field, id, of each data object is mapped

to sets that are not consecutive. If the data field, id, of all data objects in

the array needs to be accessed, the sets in gray color will be accessed and

the sets in white color will remain unused. In this case, flexible expansion

scheme is required to effectively utilize these unused sets. Compound data

structures are also widely used in test cases, vpr and gcc. In these cases, our

proposed method outperforms expandable cache because the access behaviors

of compound data structures are considered. In test cases, applu and apsi,

multi-dimensional arrays are intensively used. The accesses to these arrays

can result in irregular access behaviors in data cache if the accesses are not

based on the index of the last dimension. In these cases, the software design

flow proposed in this work is capable of finding suitable expansion schemes

to reduce cache misses.

Using the energy consumption of 2-way set-associative cache as baseline,

the energy improvement ratios of direct-mapped cache, original expandable

cache, and our proposed cache structure are presented in Figure 2.11. The

40

energy improvement ratio is computed as E. of 2−Way Set−Assciative Cache
E. of Tested Cache Structure

. In

average, all three tested cache structures have lower energy consumption as

compared with 2-way set-associative cache. For direct-mapped cache, unless

its miss rate is much larger than that of 2-way set-associative cache, it re-

sults in lower energy consumption. In average, our proposed cache structure

achieved 22.86% energy improvement as compared with 2-way set associative

cache. As compared with original expandable cache, our energy improvement

ratio is 5.62% higher.

1

1.1

1.2

1.3

1.4

En
er
gy

Im
pr
ov

.R
at
io

or
m
al
iz
ed

fo
r2

W
ay

Ca
ch
e)

Direct Mapped
Expandable Cache
Our Method

0.8

0.9

1

1.1

1.2

1.3

1.4

En
er
gy

Im
pr
ov

.R
at
io

(N
or
m
al
iz
ed

fo
r2

W
ay

Ca
ch
e)

Test Case (SPEC2000, train)

Direct Mapped
Expandable Cache
Our Method

Figure 2.11: D-Cache Energy Improvement Ratio (as compared with original
Expandable Cache [2])

Next, the overhead of our proposed method is discussed. First, the in-

sertion of configuration instructions causes the increase in static instruction

count. Moreover, additional execution cycles are required due to expansion

scheme re-configuration. The overhead is summarized in Table 2.2. It shows

that the overhead is insignificant.

41

Table 2.2: Overheads of Our Cache Structure

Overhead (in Average) Value

Static Instruction Count 1.63%

Cycle Count 0.0618%

2.4.3 Experiment Results for Test Cases with Different
Input Data

In this section, experiments are conducted to observe the miss rate of the pro-

posed cache structure when the input file of each test case is not known. Test

cases with multiple input files in ref data set are selected for experiments.

For each test case and its input files in ref data set, two sets of expansion

schemes are tested. The expansion schemes in the first set are determined

by the input files in train data set. That is, no matter which input file in

ref data set is tested, an identical set of expansion schemes is used. On

the contrary, the expansion schemes in the second set are determined using

dedicated input files in ref data set. That is, for each test case and each of

its input file, a set of dedicated expansion schemes is used. Through experi-

ments, we want to discuss whether dedicated profiling is required when the

input of an application is changed. The experimental results for the selected

test cases are presented in Figure 2.12. For each test case, all input files in

ref data set are tested and the miss rate reduction ratios are reported. Our

results are compared with those of expandable cache.

In test case gzip, as shown in the leftmost column in Figure 2.12, the

experimental results of our method are worse than the results of expandable

cache when fixed expansion schemes are used. A further analysis on the

42

data access behavior of gzip explains the reason. During the execution of

gzip, sequential data segments with various sizes are created and accessed.

These data segments determines the layout of memory space and are highly

dependent on the input files. Therefore, when fixed expansion schemes are

used in our method for different input files, the proposed cache structure

cannot correctly expand busy sets to unused sets. In this case, dedicated

profiling is required for each input file.

In test case gcc, as shown in the second column of Figure 2.12, the

experimental results of our method are at least 5% better than the results of

expandable cache no matter whether fixed or dedicated expansion schemes

are used. As discussed in Section 2.4.2, compound data structures are widely

used in this test case. When data objects of a dedicated data structure are

accessed frequently in a program routine, the access behavior of data cache

do not change much even when different input files are tested. In other

words, the access behavior of data cache in this case is primarily determined

by data structure and program routine. Different input files only changes

the execution ratio of each program routine. Similar experimental results

can also be observed in test case vortex in the third column of Figure 2.12.

For these test cases, the expansion schemes determined by the representative

input files in train data set can be used for different input files.

In test case bzip2, as shown in the last column of Figure 2.12, the ex-

perimental results of our method are slightly better than those of expandable

cache when fixed expansion schemes are used. In test case bzip2, lots of

small data segments with similar sizes are created and accessed. The access

order and access frequency of these data segments are dependent on input

43

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%
Fixed Exp. Schemes

Dedicated Exp. Schemes

10%

5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

gr
ap
hi
c

lo
g

pr
og
ra
m

ra
nd

om

so
ur
ce 16
6

20
0

ex
pr

in
te
gr
at
e

sc
ila
b

vo
rt
ex
1

vo
rt
ex
2

vo
rt
ex
3

gr
ap
hi
c

pr
og
ra
m

so
ur
ce

164.gzip 176.gcc 255.vortex 256.bzip2

M
iss

Ra
te

Im
pr
ov
.R
at
io

Test Cases & Input Data

Figure 2.12: Miss Rate Improvement Ratios for Test Cases with Multiple
Input Data (SPEC2000, ref)

files. Unlike test case gzip, the data segments in bzip2 are located more

regularly in memory space. Although the run-time access behaviors of these

data segments are quite diverse for different input files, the memory layout

of these data segments are similar. This property is beneficial for our pro-

posed cache structure. Therefore, our method can still provide comparable

miss rate reduction as compared with expandable cache when fixed expansion

schemes are used.

From our experiments, some observations can be drawn. First, when

compound data structures are widely used in an application, the data cache

access behavior of that application is primarily determined by data structure

and program routine. In this situation, fixed expansion schemes are enough

44

for different input files. Second, the memory layout of data is also important

to our proposed cache structure. As long as the memory layout of data does

not change dramatically when different input file is tested, fixed expansion

schemes are able to provide comparable improvement on miss rate reduction

as compared with expandable cache. Finally, if the memory layout of data

is highly dependent on input file, dedicated profiling is required for different

input file.

45

Chapter 3

Thermal-Aware Memory
Mapping in 3D Designs

System in package (SIP) provides a cost-effective solution for large-scale in-

tegration [23]. This technology has been widely used in mobile devices and

embedded systems. Current technology allows more than twenty chips to

be stacked in one package [24]. With the capacity provided by SIP technol-

ogy, integrating memory chips into package has become popular in recent

years. Several researches on memory integration based on SIP have been

studied [25] [26] [27] [28] [29]. Though SIP technology provides extremely

high capacity for circuit integration, it suffers severe thermal stress because

of three dimensional stacking of ICs [30]. Thermal stress will induce variation

of DRAM retention time and reliability problem [31].

Many temperature-aware researches have been conducted. They can be

classified into two categories, dynamic and static thermal managements. The

former techniques detect the temperature information at run-time, and stop

hot units operating till their temperature cools down. Examples such as

voltage scaling [32], throttling techniques [33], and non-DVS localized ther-

46

mal management [34] are in this category. Dynamic thermal management

schemes can precisely monitor temperature value and guarantee that the sys-

tem temperature will never be higher than a predefined constraint, however,

at the cost of slowdown of the processor execution. As to static thermal man-

agement, the profiling data is generated first and then used to analyze the

temperature distribution of the program. [35] proposes a floorplan technique

from microarchitecture level point of view to reduce the hotspot tempera-

ture. This floorplan algorithm determines the locations of functional units

by spreading hot functional units and surrounding them by cooler functional

units. However, this technique is less flexible because the same floorplan

is used for all applications and the locations of functional units can not be

changed after floorplan is done. Yet, another approach [36] is proposed from

compiler-level point of view which distributes computations to different func-

tional units so that the hotspots are prevented.

Except [37], none of previous research addressed thermal and energy prob-

lem for 3D memory design. In [37], energy and delay savings due to 3D

partition of cache memory based on wafer-bounding technology is discussed.

Although its method is suitable for custom cache design, it cannot be applied

to DRAM chips in stacked SIP design.

DRAM is usually used as main memory for program execution. The

thermal behavior of a memory block in a 3D SIP is affected not only by the

power behavior but also the heat dissipating ability of that block. The power

behavior of a block is related to the applications run on the system while the

heat dissipating ability is determined by the number of tier and the position

the block locates.

47

Therefore, a thermal-aware memory allocator should consider the follow-

ing two points. First, allocator should consider not only the power behavior

of a logic block but also the physical location during memory mapping, sec-

ond, the changing temperature of a physical block during execution of pro-

grams. In this chapter, we will propose a memory mapping algorithm taking

into consideration the above-mentioned two points. Our technique can be

classified as static thermal management to be applied to embedded software

designs.

The rest of this chapter is organized as follows. In Section 3.1, motiva-

tion of this work is presented. Section 3.2 describes our system model and

problem definition. In Section 3.3, details of each step of our algorithm are

introduced. These techniques include thermal aware memory configuration,

program behavior analysis and ILP formulation. The experimental results

are given in Section 3.4.

3.1 Observation & Motivation

In traditional on-board designs, DRAM chips are placed in a planar space.

Therefore, system designers can view all DRAM chips identical and assume

that all DRAM chips have the same heat dissipating ability. However, when

DRAM chips are stacked using SIP technology, chips of different tiers have

very different environmental conditions. For example, in 3D memory, it is

more difficult to dissipate the power of a physical block on the middle tier

than on the top tier, as shown in Figure 3.1. That is, chips on different

tiers have different heat dissipating abilities and can sustain different access

frequencies under a given temperature constraint. Moreover, for each access,

48

Dual Die DRAM Packages on PCB Module

DRAM Die

DRAM Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM Dies in SIP

Figure 3.1: DRAM Packages on PCB and DRAM Dies in SIP Design

multiple banks of different chips need to be triggered at the same time. How

to select a bank in a chip should consider thermal issue.

On the other hand, the logical memory space for an application comprises

several memory blocks for data, instructions, heap and stack. Each block has

different access behavior and access frequency. And even different segments

in a block can have quite different access frequencies. For example, instruc-

tions of an application are all loaded to a consecutive memory space. But

segments for instructions of different loops or different functions are accessed

with different frequencies. This situation can also be found in memory blocks

for data, heap and stack. In traditional on-board DRAM chips, the map-

ping between these memory blocks and physical DRAM chips can be simple

since all DRAM chips are identical. However, for SIP designs, the mapping

problem becomes complicated because the behavior of each memory block

49

and the heat dissipating ability of each DRAM chip need to be considered

simultaneously for thermal management.

Figure 3.2 gives an example to present our motivation. Assume that a pro-

gram is executed with 4 stages. 4 functions named funcA(), funcB(), funcC()

and funcD() are called in each stage, as shown in Figure 3.2(a). When a func-

tion is called, its corresponding memory segment is accessed. Since different

function has different behavior, each segment has different access frequency.

Let the access frequency of each segment be given in Figure 3.2(b) where

access frequency is defined as the number of accesses to a memory segment

divided by the total cycle counts of that stage. In this simplified example,

we assume each memory die has only two banks. Due to design constraints,

for each memory die, only one bank can be accessed at a time. Let a wider

memory word be composed of bits from two dies. Then 2 memory dies are

required to be triggered simultaneously for each access. This means an ad-

dress will map to 2 banks of 2 different memory dies. Three mapping policies

are shown in Figure 3.2(c)-(e). Figure 3.2(c) shows a straightforward map-

ping (Mapping A) where two banks at the same relative position denoted

as A, B, C, D are accessed simultaneously. Figure 3.2(d) shows a mapping

(Mapping B) to avoid stacking effect where banks accessed at the same tier

are not in the same vertical position and Figure 3.2(e) a mapping (Mapping

C) consider stacking effect and the access frequency where segments with

high access frequency are mapped to banks on upper tiers. The simulation

result by HotSpot 4.0 [38] is presented in Figure 3.2(f). The y-axis represents

the highest temperature in all dies and the x-axis represents the execution

stages referred as Stage I, II, III and IV. Each stage represents the execution

50

A
A

B
B

C
C

D
D

A
D

D
A

C
B

B
C

A
B

B
A

C
D

D
C

ExampleProgram()
{
funcA(); // access segment A
funcB(); // access segment B
funcC(); // access segment C
funcD(); // access segment D

}

(c)

(a) (b)

Straightforward

(f)

...

Top Top Top

(d)

Stacking Effect

(e)

Stacking Effect &
Program Behavior

Segment
funcA()
funcB()
funcC()
funcD()

Access Frequency
70%
25%
35%
80%

15

25

35

45

55

65

75

85

FuncA() FuncB() FuncC() FuncD()

H
ig

he
st

 T
em

pe
ra

tu
re

 in
 P

ac
ka

ge

(
)

Straightforward

Avoid StackingEffect

Avoid StackingEffect& ConsiderProgram

Execution Stage

Mapping A: Mapping B: Mapping C:

Figure 3.2: (a) Example Program; (b) Access Frequency; (c) Mapping A; (d)
Mapping B ; (e) Mapping C ; (f) Simulation Result

51

period of each function. Stage I (funcA()) shows that the temperature is

reduced at most 7◦C by mappings considering stacking effect (Mappings B,

C) as compared to Mapping A. Stages II & III (funcB() & funcC()) show

that mappings considering stacking effect but banks located at bottom tiers

(Mapping C) sometimes has higher temperature than straightforward map-

ping. But in both stages, the temperature is relative low because of low

access frequency. The maximum temperature occurs in Stage IV because of

the highest access frequency. Stage IV (funcD()) shows that a mapping con-

sidering stacking effect (Mapping C) and program behavior can reduce the

maximum temperature by 18◦C and 12◦C as compared to Mappings A and

B respectively.

3.2 System Model and Problem Definition

In this section, we will first give our system model. Based on the model, we

will define our problem and propose an overall design flow. The data width of

a modern DRAM chip often ranges between 20-bit to 24-bit while processors

have a 32-bit, 64-bit, or more data lines. Therefore, to read or write a 32-

bit, 64-bit or more bit word from memory, multiple DRAM chips need to be

accessed. Figure 3.3 gives an example of a system containing 32-bit processor,

system bus, memory controller and 8-bit DRAM chips. To access a 32-bit

data, 4 DRAM chips need to be activated simultaneously. Let the DRAM

chips activated simultaneously form a group. Then, in the example, DRAM

Die 0 to DRAM Die 3 are in the same group. To increase the number of

words (address space) in the system, multiple groups are assembled. In the

example, there are 4 groups. Hence, the total address space is 4 times the

52

32-bit Processor

Memory Controller
System Bus

DRAM
Die 0

DRAM
Die 1

DRAM
Die 2

DRAM
Die 3

DRAM
Die 4

DRAM
Die 5

DRAM
Die 6

DRAM
Die 7

DRAM
Die 8

DRAM
Die 9

DRAM
Die 10

DRAM
Die 11

DRAM
Die 12

DRAM
Die 13

DRAM
Die 14

DRAM
Die 15

Group 1

Group 2

Group 3

Group 4

8-bit 8-bit 8-bit 8-bit

Figure 3.3: Memory System

word capacity of one group.

In a stacked SIP system, memory dies are stacked one tier on another.

In one tier, there will be one or more dies packed. Due to intra-tier package

routing constraint, the number of dies packed in one tier is rarely greater than

4. Figure 3.4(a) shows a system that has 8 tiers and 2 dies packed in one

tier. Within a die, there are multiple banks in it. The floorplan of a typical

DRAM chip with 4 banks is shown in Figure 3.4(b). For each memory access,

Control & Pre-charge Circuits block is always triggered. This block contains

control, error correction and pre-charge circuits. The Cell Bank block, the

Peripheral Circuits block and the Sense Amplifier block of each bank will be

triggered if that bank is accessed. In each DRAM die, only one bank can

be accessed at a time due to the shared hardware and bus lines.

For a given address, memory controller will generate appropriate control

signals to first select dies (forming a group) and then within dies to select

banks. Let us take Figure 3.5 as an example using the same system config-

53

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

DRAM DRAM

Pseudo Tier to represent
the effect of Tiers Below

DRAM Chips

DRAM Tiers
(Tier 0 ~ Tier 7)

Cell Bank Cell Bank

Sense Amplifier Sense AmplifierPe
rip

he
ra

l C
irc

ui
ts

Pe
rip

he
ra

l C
irc

ui
ts

Control & Pre-charge Circuits

die 0
die 1
die 2
die 3
die 4
die 5
die 6
die 7

die 8
die 9
die 10
die 11
die 12
die 13
die 14
die 15

(a)

Cell Bank Cell Bank

Sense Amplifier Sense Amplifier

Pe
rip

he
ra

l C
irc

ui
ts

Pe
rip

he
ra

l C
irc

ui
ts

(b)

Figure 3.4: (a) SIP Model; (b) Floorplan of a Typical DRAM chip

A

die 0

A

A

A
die 1

die 2

die 3

die 8

die 9

die 10

die 11

B

die 0

B

B

B

die 1

die 2

die 3

die 8

die 9

die 10

die 11

(a) (b)

... ...

Figure 3.5: Example for Memory Access

54

uration as shown in Figure 3.3 where 4 dies form a group. In Figure 3.5(a),

die 0, die 1, die 2 and die 3 form a group. The banks in a group that

are selected simultaneously to form a wider word are denoted as a set. Fig-

ure 3.5(a) shows that banks denoted as A in the same relative position form

a set. In Figure 3.5(a), 4 dies form a group and there are 4 sets in a group.

However, in a stacked SIP design, Figure 3.5(a) will suffer serious thermal

problem. The reason is as follows. Of all blocks in a die, Sense Amplifier

block has extremely high power density due to their small area size. In gen-

eral, more than 30% power of a DRAM chip is consumed by Sense Amplifier

block while the area of a block is usually less than 5% of the total area. Sense

Amplifier blocks are usually candidates for hotspot. If continuous addresses

in a bank are accessed, Sense Amplifier blocks stacked at the same relative

position in 3D space will result in high temperature.

On the other hand, Figure 3.5(b) shows another access mapping where the

same dies form a group but banks in different relative positions are selected

to form a set. In this mapping, lower temperature can be expected because

the activated banks are not in the same vertical location.

In this chapter, we will study a memory mapping problem to minimize

the maximum temperature in a stacked 3D memory system. The problem

is defined as follows. Given parameters of a memory system and the pro-

filing of memory references for all application programs, the objective is to

find a memory configuration and a mapping from logical address to physical

location so that the maximum temperature is minimized.

To solve this problem, the flow depicted in Figure 3.6 is proposed. The

first step, Determination of Candidate Configurations is, for given parame-

55

Parameters of the memory
system

Determination of
Candidate Configurations

Memory reference records
for all applications

Application Behavior
Analysis

Segments of all
applications

ILP Formulation for
Segments Mapping

Mapping decisions for all
segments

Configurations of the
memory ststem

Candidate configurations

Figure 3.6: Overall Flow

ters of a memory system, to find candidate memory configurations (in Sec-

tion 3.3.1). Then, behaviors of applications run on the system are analyzed in

the second step, Application Behavior Analysis, where logical memory blocks

that have the similar behaviors are grouped in a segment (in Section 3.3.2).

According to the candidate configurations and segments obtained, the last

step, ILP Formation for Segments Mapping, is an ILP formulation to perform

mapping so that the maximum temperature is minimized (in Section 3.3.3).

3.3 Thermal Driven Memory Address Map-

ping Algorithm

Before we present our mapping algorithm, we first review some terms defined

in Section 3.2.

group for a given address, the dies that are accessed simultaneously form a

56

Memory System

G
roup

Set
Set

Set
Set

G
roup

Set
Set

Set
Set

G
roup

Set
Set

Set
Set

G
roup

Set
Set

Set
Set

Figure 3.7: Hierarchical View

group.

set for a given address and a given group, the banks that are accessed si-

multaneously form a set.

segment a collection of consecutive logical memory blocks that have similar

behaviors is called a segment.

The parameters of a memory system include the number of tiers, #tier, the

number of DRAM dies on one tier, #die on tier, the number of banks in

a DRAM die, #bank, the bandwidth of a DRAM die, #bandwidth die, the

size of a DRAM die, #bit die, and the bandwidth of system bus,

#bandwidth system. #bandwidth system/#bandwidth die determines the

number of DRAM dies in a group and also the number of banks in a set. The

number of words in a set is computed as #bit die/(#bandwidth die×#bank).

3.3.1 Determination of Candidate Configurations

For given parameters of a memory system, we need to determine how to

form a group and how to form a set within a group. Let us take the sys-

tem in Figures 3.3 and 3.4 as an example. In this example, because of

57

2
0 1

3 6
4 5

7
Tier n

10
8 9

11 14
12 13

15
Tier n + 1

Figure 3.8: Memory Banks of Tier n & Tier n + 1

#bandwidth system = 32 and #bandwidth die = 8, the number of dies in a

group is 4. There are 4 banks in a die. Hence, the number of sets in a group

is 4. Figure 3.7 gives the hierarchical view of the system.

First, we show how to form a group. Intuitively, we can select any 4 dies

to form a group. However, most of combinations of dies are not required to

be considered. Because dies in a group are accessed simultaneously, thermal

behavior of a group is determined by the die that has the worst behavior.

For example, if die 7, die 6, die 5 and die 4 in Figure 3.4(a) are defined as

a group, though die 7 is on the top tier and has the best heat dissipating

ability, the actual thermal behavior of the group is bounded by die 4. No

matter how low the temperature of die 7 is, the memory space provided by

the group would not be functional if die 4 is overheated. Thus, dies in a

group should have similar environmental conditions.

Based on the discussion above, how to form a group becomes straight-

forward. We should group dies on consecutive tiers into a group. In our

example, because the number of dies in a group = 4 and #die on tier = 2,

dies on 2 neighboring tiers forms a group. That is, die 0, die 1, die 8, and

die 9 form a group, and die 2, die 3, die 10, and die 11 form a group,...etc.

Next, we show how to determine the banks in a set. First, banks on the

same tier have different heat dissipating abilities when #die on tier ≥ 2.

58

Tier n

Tier n + 1

(a)

Set 0

Set 1

Set 2

Set 3 (b)

Tier n

Tier n + 1

Figure 3.9: (a) Configuration I ; (b) Configuration II

For example, suppose there are two dies on a tier as shown in Figure 3.8.

Banks 1, 3, 4 and 6 are in the middle area of the tier and therefore have

worse thermal behavior than banks 0, 2, 5 and 7. Second, accessing banks of

different dies at the same vertical position will result in undesirable thermal

effect. For example, banks 0, 8 are at the same vertical position. If they are

accessed simultaneously, heat will be generated in a small area and cannot be

dissipated in vertical directions. This situation should be avoided. Based on

the discussion above, possible sets combinations for a group can be defined

through enumeration. The term configuration is used to refer to a definition

of all sets in a group. We use the example in Figure 3.8 to explain how to

determine possible configurations where dies on two neighboring tiers form

a group.

We start with defining a set with best thermal behavior. As mentioned

earlier, the thermal behavior of a set is determined by the bank with the

worst thermal behavior. Therefore, to define a set with best thermal behav-

ior, two rules should be followed. Rule 1 is that banks in the middle area

should not be grouped in the same set and rule 2 is that banks in the same

vertical position should not be grouped in the same set. Following these

two rules, Figure 3.9 shows two resultant configurations, Configuration I and

59

Configuration II, where banks drawn in the same patterns are defined as a

set. Two configurations have their own characteristics. In Configuration I,

set 0 and set 1 have good heat dissipating ability because the banks in these

two sets are all in the boundary. However, the environmental conditions of

set 2 and set 3 are worse than those of set 0 and set 1 because banks in set

2 and set 3 are all located in the middle positions with less heat dissipating

abilities. On the other hand, in Configuration II, the thermal behavior of

each set is almost identical.

Configuration I is suitable for a program with uneven access to mem-

ory while Configuration II is good for a program with even memory access.

Which configuration to choose will depend on the behavior of the programs

executing on the system. Thus, both configurations are selected as candidate

configurations in our example.

Nevertheless, the configurations we obtained do not comply with the de-

sign of an off-chip DRAM design. In traditional designs, a common address

bus is used for all memory dies. Therefore, bank address of each memory die

is identical and banks at the same vertical locations are always accessed as

a set. To have different banks in different dies accessed simultaneously, dif-

ferent bank addresses are required for each die. It is not feasible for memory

controller to generate different bank addresses for each die due to in-package

routing overhead. A re-mapping circuit shown in Figure 3.10(a) is proposed

to be added to each DRAM die. Let BA 0 and BA 1 stand for the input

pads for bank address bits 0 and 1. By setting INV BA 0 and INV BA 1 to

VDD or GND, we can select to invert bank address bits 0 and 1 or not. The

re-mapped bank address bits are denoted as BA 0 ′ and BA 1 ′ which are sent

60

0
1

0
1

BA_0'
BA_0

BA_1

INV_BA_0

INV_BA_1

2-to-1
MUX

2-to-1
MUX

D
R

A
M

(a)

Swap
BAs INV_BA_0 INV_BA_1 Effect

No GND GND

No VDD GND

2
0

3
1Original Mapping

Column Switched 23
01

No GND VDD Row Switched 2 3
0 1

No VDD VDD 180 Rotated 23
01

Yes GND GND

Yes VDD GND

20
31

90 Counterclockwise
Rotated 2

3
0
1

Yes GND VDD 90 Clockwise
Rotated

2
3

0
1

Yes VDD VDD Mirrored by upper-left
to lower-right diagonal

2
3

0
1

(b)

0

2

1

3

3

1

2

0

1

3

0

2

2

0

3

1No Swapping
Invert BA_1

Original

No Swapping
Invert BA_0

No Swapping
Invert BA_0 &

BA_1
Configuration I

0

2

1

3

0

2

1

3

3

1

2

0

3

1

2

0

Original Original

Configuration II
(c)

No Swapping
Invert BA_0

& BA_1

No Swapping
Invert BA_0

& BA_1

BA_1'

Mirrored by upper-right
to lower-left diagonal

Figure 3.10: (a) Re-mapping Logic; (b) Re-mapping Table; (c) Example

61

to control circuit and determines the bank to be accessed. Moreover, swap-

ping address lines connected to BA 0 and BA 1 doubles the mapping space.

Table in Figure 3.10(b) enumerates all mappings supported by the proposed

circuit. The first column of the table specifies whether the address lines are

swapped, and the second and third columns represent whether INV BA 0

and INV BA 1 are set to 1 or 0. The forth column gives the address of each

bank after re-mapping. Though only one thirds of all possible mappings are

supported by our proposed circuit, it is sufficient to implement most of de-

sired configurations. Figure 3.10(c) shows the settings for Configurations I

& II as examples.

Next, we should determine the cost of each configuration under different

access frequency to each set. In each configuration and in each set, we define

the relation between temperature and access frequency by simulation. This

relation can be used to determine the cost of mapping a memory segment

with given access frequency to a set. For a set, the average power is defined

as follows. First, the access to memory is divided to read access and write

access. And operating power in Equation (3.1) considers different ratios of

read and write access where α represents the ratio of read access to total

access and (1− α) the ratio of write access to total access.

PowerOperating = PowerRead × α + PowerWrite × (1− α) (3.1)

Next, with different access frequency to a set, f , Equation (3.2) is defined

for the average power.

PowerAvg = PowerOperating × f + PowerStandby × (1− f) (3.2)

Finally, the simulation of each set is done as follows. For each f , the average

62

power is calculated. Then, the hardware blocks of the target set for sim-

ulation are set with the average power while all other blocks with standby

power. Next, thermal simulation tool is called to obtain the steady state

temperature. In this chapter, HotSpot 4.0 [38] is used as our thermal simu-

lation tool. The temperature obtained will be used to evaluate the effect of

mapping a memory segment with access frequency f to a set. Notice that this

temperature computed may be underestimated since all other surrounding

blocks are assumed to be idle. That means, the interaction effect of blocks

in the model is ignored. However, this underestimation is acceptable since

the temperature can still reflect the thermal behavior of a set under a given

access frequency. We use the term,

T (j, f)

to represent the steady state temperature when set j is accessed with fre-

quency f . This term will be used to define the cost function in Section 3.3.3.

3.3.2 Application Behavior Analysis

For each program runs on the system, the memory requirement is varying

over the time. We can partition a program’s logical address space to a number

of segments each with different access frequencies and then based on access

frequency, map each segment to different physical locations in a 3D memory

to minimize maximum temperature.

An algorithm, Behavior Analysis Algorithm, is developed for this purpose

as shown in Figure 3.11. First, profiling of memory references for application

programs is recorded. For each cycle, whether memory is accessed and if

63

yes, which memory address is referenced are recorded. Next, the memory

reference profiling is fed to our algorithm for analysis.

In each cycle, the algorithm first checks whether it has a memory refer-

ence. If yes, it then checks if there exists a segment containing the address of

the reference (line 11). If no such segment exists, a new segment is created

for the reference (lines 12, 13). If there does exist a segment containing the

address of the reference, then update the access information to that segment

(line 15). Since a segment may have different behaviors for different peri-

ods of time, segments need to be analyzed periodically. A variable named

counter is presented to invoke segments analysis and segments merging for a

fixed period of time (lines 17, 18, 19, 20, 21, 22). Counter is a user defined

variable and is increased by 1 every execution cycle. When counter equals to

period where period is a constant, segments analysis is invoked and counter

is reset to 0. By the time, the access frequency of each segment is computed

as the number of memory accesses over the cycle counts.

In Application Behavior Analysis stage, a first-step merging is performed

to merge neighboring segments. Neighboring segments which have similar

behaviors are merged. Here, the criterion for merging is changing over the

time. At the beginning of the algorithm, segments can be merged only when

they are referencing adjacent address space and the access frequencies are

identical. When in the later stages of the algorithm, the criterion for merg-

ing is looser. A threshold of access frequency is defined. As long as the

difference of access frequencies is smaller than the threshold, two segments

are merged. When the program completes, a number of segments with their

access frequencies over different periods are obtained. For each segment, the

64

highest frequency of all periods is then determined as the frequency of the

segment.

3.3.3 ILP Formulation for Segment Mapping and Group

Configuration

After we find candidate configurations for each group and analyzed the be-

haviors of programs, how to select the most suitable configuration for each

group and how to map each memory segment to an appropriate set remain

to be solved. An ILP formulation is presented to solve these problems si-

multaneously. First, the terms used in our formulation are introduced as

follows:

Configx,y 1 if configuration x is selected for group y.

Segmenti,Setx,y,z 1 if segment i is mapped to Setx,y,z where tuple (x, y, z)

refers to the z set in group y with configuration x.

Costi,Setx,y,z Cost of mapping segment i to Setx,y,z. The cost model will be

presented in later paragraph.

UNIT SET SIZE a constant to denote the size of a set.

SetSizex,y,z the size of Setx,y,z.

SegmentSizei the size of segment i.

Then, the ILP formulation for our problem can be given as

Minimize
∑

i

∑

x,y,z

Costi,Setx,y,z × Segmenti,Setx,y,z (3.3)

65

1 Algorithm : Program Behavior Analysis Algorithm()
2 Input : Memory reference record
3 Output : Memory segments
4
5 counter = 0;
6 While(end of record is not reached)
7 {
8 ref = ReadNextReference();
9 If(ref is TRUE)
10 {
11 segment = FindSegmentFor(ref);
12 If(segment == NULL)
13 CreateNewSegmentFor(ref);
14 Else
15 AddInfoTo(segment, ref);
16 }
17 counter++;
18 If(counter == period)
19 {
20 counter = 0;
21 UpdateAllSegments();
22 MergeNeighboringSegmentsWithSimilarBehavior();
23 }
24 }
25 UpdateAllSegments();
26 MergeNeighboringSegmentsWithSimilarBehavior();

Figure 3.11: Algorithm for Behavior Analysis Algorithm

66

subject to
∑

x

Configx,y = 1, ∀ y (3.4)

∑

x,y,z

Segmenti,Setx,y,z = 1, ∀ i (3.5)

UNIT SET SIZE× Configx,y = SetSizeSetx,y,z ,
∀ x, y, z (3.6)

∑
i SegmentSizei × Segmenti,Setx,y,z ≤ SetSizeSetx,y,z ,

∀ x, y, z
(3.7)

The Costi,Setx,y,z (the detail of computing Costi,Setx,y,z will be explained

later) represents the temperature cost when Segment i is mapped to Setx,y,z.

The objective is to minimize the mapping cost. Equation (3.4) guarantees

each group has exactly one configuration. Equation (3.5) is required to make

sure each segment maps to only one set. Equation (3.6) ensures that if

Configx,y = 1 (configuration x is selected for y group), the size of all sets

under x configuration for y group is equal to UNIT SET SIZE. Equation (3.7)

requires that all segments map to Setx,y,z can not exceed the size of Setx,y,z.

Let the number of candidate configurations beX, the number of groups be

Y , the number of sets in each group be Z, and the number of segments to be

mapped be S. The number of variables in the formulation is O(X×Y×Z×S).

X, Y and Z are fixed values determined by system parameters. Therefore

the number of variables in the formulation is determined by S. Since the

number of segments produced in the stage of Application Behavior Analysis

may be hundreds to thousands, the number of variables in the formulation

can be too large to be solved by most ILP solvers effectively. To limit the

67

number of segments in the formulation, a second-step segment merging is

needed.

The detailed merging process is explained as follows. First, the values

of the highest and the lowest access frequencies of all segments, which are

denoted as Fhigh and Flow, are reported by Application Behavior Analysis

stage. A number of buckets are defined between Fhigh and Flow. Let the

number of buckets be L, the frequency limit of each bucket is defined as

Equation (3.8).

Flow+b×(
Fhigh + Flow

L
) ≤ Fbucket < Flow+(b+1)×(

Fhigh + Flow

L
), 0 ≤ b < L

(3.8)

Segments with access frequencies fall in the same bucket are considered to

have the same access frequency levels and are merged. Note that the size of

a segment after the merging stage still needs be limited to alleviate possible

fragmentation problems. For example, we set 1/8 × UNIT SET SIZE as

the size limit of a segment.

The value of L determines the granularity of the merging scheme. A small

L leads to a coarse-grained merging and reduces the number of segments ef-

fectively. However, the mapping is less flexible and may result in higher

temperature. The tradeoff between the number of segments in the formula-

tion and the quality of the mapping result is discussed in Section 3.4.3.

Finally, we will explain how to compute Costi,Setx,y,z . Let freq(i) stands

for the access frequency of segment i, Costi,Setx,y,z is defined as Equation (3.9),

where T (Setx,y,z, f) is the temperature of Setx,y,z with f frequency obtained

68

in simulation defined in Section 3.3.1.

Costi,Setx,y,z = γ
T (Setx,y,z,freq(i))−α

β (3.9)

In the equation, α, β and γ are all constant values. α is the base tem-

perature and is defined as the minimal value of T (Setx,y,z, f). Therefore,

T (Setx,y,z, freq(i))− α is always equal to or greater than 0. β is a positive

value to prevent the cost from growing too fast. It also implies that the

order of the cost is increased by 1 if T (Setx,y,z, freq(i)) is increased by β. γ

is a value greater than 1 and grows linearly with the number of segments.

Because we have a min-max problem, to avoid the situation where few terms

have very high values while most terms have low values, our cost function is

defined to grow in exponential. A larger γ can prevent our solution from the

situation described above. When γ is equal to or greater than the number of

segments, the above-mentioned situation can be completely avoided.

3.4 Experimental Results

In this section, experimental results for different execution conditions are

presented. The system parameters are listed in Table 3.1 where the power

values are estimated based on the IDD values of a Hynix DDR400 512 Mb

SDRAM chip [39]. We assume the system supports multiprogramming with

Round-Robin scheduling and all programs run on the system are pre-loaded

to memory. In Section 3.4.1, the program set is composed of MediaBench [40],

PowerStone [41] benchmark suites and JM H.264/AVC CODEC [42]. The

programs are duplicated to multiple instances to simulate systems with dif-

ferent memory utilization ratio. For experiments in Section 3.4.2, programs

69

from SPEC CPU2000 benchmark [21] suite are also included. SimpleScalar

3.0 [20] is used to generate memory reference records. lp solve 5.5 [43] is used

as our ILP solver. HotSpot 4.0 [38] is used as our thermal simulation tool.

To demonstrate the efficiency of our method, two straightforward mappings

are tested for comparison. The first one selects 4 DRAM dies at the same

relative positions of 4 consecutive tiers as a group and the second selects all

4 dies of 2 consecutive tiers as a group. Note that no additional re-mapping

circuits are added in these two mappings and therefore stacking effect among

banks cannot be avoided. These two mappings are referred as M 1 and M 2

while our proposed mapping is referred as M ours in the following discussion.

In Section 3.4.1, a single-core system with 512B cache size is used to

examine the effectiveness of our proposed memory mapping flow. Next, in

Section 3.4.2, a multi-core system with 4KB/8KB cache size is used for ex-

periment. For both experiments in Section 3.4.1 and Section 3.4.2, the cache

architectures are direct-mapped and the value of L is set to 12. The trade-

off between the value of L and the quality of mapping result is discusses in

Section 3.4.3.

3.4.1 Experiments for Single-Core System

The experiments in this section demonstrate the effectiveness of our proposed

memory mapping flow when main memory is accessed with high frequencies.

A single-core system with 512B cache memory is used in this section. The

size of the cache memory is intentionally reduced. In general, small cache

size increases miss rate as well as access rate to main memory. This reduced

cache size leads to higher cache miss rate and higher memory access rate.

70

Table 3.1: Parameters for Experiments

System Parameter Value
#tier 8
#die on tier 2
#bank 4
#bandwidth die 8
#bandwidth system 32

DRAM Chip Parameter Value
Capacity 512 Mb
Internal Clock Rate 200 MHz
Voltage 2.5 V
Max. Power 0.75 W
Standby Power 0.34 W

Total Memory Size 1 GB

L1 Cache Architecture

Single-Core

Size: 512B
Organization: Direct-Mapped

Line Size: 16-byte
(32 Sets)

Multi-Core

Size: 4KB/8KB
Organization: Direct-Mapped
Line Size: 32-byte/64-byte

(128 Sets)

Power Values (mW)
Mode Sense Amplifier Cell Bank Control & Pre-charge
Standby 36.5 18.2 121.2
Active Read 186.4 94.9 211.6
Active Write 217.6 114.6 245.7

10
20
30
40
50
60
70
80
90
100

H
ig
he

st
Te
m
pe

ra
tu
re

of
M
em

or
y
Sy
st
em

(
)

75%, 800MHz 95%, 800MHz 75%, 1.2Gz 95%, 1.2GHz

M_1 80.2 81.2 87.4 88.5

M_2 78.1 79.4 84.8 85.6

M_ours 63.1 67.1 72.9 76.3

0
10
20
30
40
50
60
70
80
90
100

H
ig
he

st
Te
m
pe

ra
tu
re

of
M
em

or
y
Sy
st
em

(
)

Figure 3.12: Comparisons of the Highest Temperature for Single-Core System

71

The first two experiments are used to observe the efficiency of our method

under different memory utilization ratios. In these two experiments, the

frequency of the processor is set to 800 MHz, which is 4 times the frequency of

DRAM dies. As shown in the leftmost column of Figure 3.12, when memory

utilization ratio is 75%, M ours has the temperature reduction by 17.1◦C

and 15.0◦C as compared to M 1 and M 2. This improvement is due to 25%

unused memory space which provides more mapping flexibility. On the other

hand, M 1 and M 2 not only suffer the stacking effect of banks but also

have locations with less heat dissipating abilities. For example, M 1 maps

a segment with high access frequency to 4 banks in the middle area of 4

bottom tiers. Then, when the memory utilization ratio is increased to 95%

(the second leftmost column), less memory space is left. The improvement

of our method is decreased to 14.1◦C and 12.3◦C. At the mean time, the

temperature of M 1 andM 2 is only slightly increased because it is dominated

by the worst case.

Next experiment is to increase the clock rate of the processor from 800

MHz to 1.2 GHz. In general, this will increase the access frequency of each

segment due to the increased throughput. When the clock rate of processor is

1.2 GHz and utilization 75% (the second rightmost column), the temperature

of all mappings is increased by 7.9◦C in average. Notice that the increase in

temperature by our method is larger than those of M 1 and M 2. The rea-

son is as follows. For segments which are accessed with high frequency, the

processor needs to be stalled frequently for memory access. This means the

memory segment is accessed at a near saturated frequency and increasing the

clock rate of processor will only lead to limited increase in access frequency.

72

However, for segments accessed with low frequency, the increase in access

frequency will be proportional to the increase ratio of processor’s clock rate.

Since maximum temperature is usually observed on tiers with less heat dissi-

pating ability and M ours maps segments with low access frequency to these

tiers, access frequency of these tiers is increased significantly as compared

to other tiers. Therefore, M ours cannot provide the same temperature re-

duction when clock rate of processor is increased. Still, our method reduces

the temperature by 14.5◦C and 11.9◦C as compared to M 1 and M 2 (75%,

800 MHz). Finally, when the clock rate of processor is set to 1.2 GHz under

95% memory utilization (the rightmost column), the temperature is reduced

by 12.2◦C and 9.3◦C as compared to M 1 and M 2 (95%, 800 MHz). Also,

notice that in all experiments, M 2 is consistently better than M 1, which

confirms our observations to form dies in adjacent tiers in a group.

3.4.2 Experiments for Multi-Core System

A multi-core system is assumed in this section. The objective of experiments

in this section is to demonstrate the effectiveness of our proposed method

when the memory system is accessed by multiple cores running different ap-

plications. Increasing the number of cores leads to higher access rate to

memory system. To make the overall access rate to the memory system

more reasonable, the cache memory size (L1 Cache) of each core is increased

to 4KB in the first experiment of this section. In this chapter, the appli-

cations run on different cores are assumed to be independent to each other

and hence data consistency is not considered. For each core, a set of pro-

grams are assigned as its workload. To avoid the memory access behavior

73

Table 3.2: Workload Combinations

Core 1 Core 2 Core 3 Core 4

W1 MediaBench PowerStone JM H.264 gzip

W2 MediaBench + PowerStone JM H.264 gzip gcc

W3 JM H.264 gzip gcc mcf

of each core to be similar, 3 more programs (gcc, gzip, mcf) from SPEC

CPU2000 are added to our program set. In terms of program behavior, these

three programs, as well as JM H.264/AVC CODEC, are much more compli-

cated than other programs in our program set. Therefore, when a core is

assigned with one of these programs as its workload, it will not be assigned

with any other programs. Also note that these four complicated programs

contain many consecutive memory reads and writes. Increasing the number

of cores executing these complicated programs will largely increase the num-

ber of segments with high access frequencies. Since SimpleScalar does not

support multi-core simulation, the memory access behavior of each core is

first recorded individually. Then, the memory access behaviors of all cores

are multiplexed to create the workload to the memory system. The system

is set to contain 4 cores, and three types of workloads, W1, W2 and W3, are

used in the experiments as listed in Table 3.2.

The experimental results are shown in Figure 3.13. In these experiments,

the frequencies of the cores are set to 800 MHz. Similar to Section 3.4.1,

for each workload combination, both 75% and 90% memory utilization ra-

tios are tested. As shown in Figure 3.13, the maximum temperature of the

system increases when the workload combination contains complicated pro-

grams. The average improvements of our proposed mapping flow for W1,

74

0
10
20
30
40
50
60
70
80
90
100

ig
he

st
Te
m
pe

ra
tu
re

of
M
em

or
y
Sy
st
em

(
)

W1, 75% W1, 95% W2, 75% W2, 95% W3, 75% W3, 95%

M_1 80.2 82.4 84.1 86.3 85 86.9

M_2 78.3 80.7 83.8 85.2 84.4 85.6

M_ours 65.4 69.9 73.7 78.5 75.1 79.4

0
10
20
30
40
50
60
70
80
90
100

H
ig
he

st
Te
m
pe

ra
tu
re

of
M
em

or
y
Sy
st
em

(
)

Figure 3.13: Comparisons of the Highest Temperature for Multi-Core System
(L1 = 4KB)

W2, and W3 are 12.75◦C, 8.75◦C, and 8.23◦C respectively. An interesting

phenomenon is that the improvement degradation between W1 and W2 are

much larger than that between W2 and W3. A further inspection on the

mapping results explains the reason. For workload combination W1, the

number of segments with high access frequencies is still small enough for our

proposed method to map all these segments to tiers with better heat dis-

sipating abilities. However, for workload combinations W2 and W3, there

are many segments with high access frequencies. Some of these segments are

mapped to banks on middle tiers. Still, our proposed mapping flow provides

considerable improvements as compared to M 1 and M 2.

One way to reduce the access frequencies to memory is to enlarge the

cache of each core. When L1 cache size of each core is set to 8KB, the experi-

mental results are shown in Figure 3.14. Similar to Figure 3.13, the maximum

temperature of the system increases and the average improvements degrades

as the workload combination contains more complicated programs. However,

75

0
10
20
30
40
50
60
70
80
90

ig
he

st
Te
m
pe

ra
tu
re

of
M
em

or
y
Sy
st
em

(
)

W1, 75% W1, 95% W2, 75% W2, 95% W3, 75% W3, 95%

M_1 78.3 80.2 81.7 82.5 83.6 85.2

M_2 77.6 78.8 80.9 81.8 82.5 84.4

M_ours 63.4 66.9 69.6 71.4 72.8 75.3

0
10
20
30
40
50
60
70
80
90

H
ig
he

st
Te
m
pe

ra
tu
re

of
M
em

or
y
Sy
st
em

(
)

Figure 3.14: Comparisons of the Highest Temperature for Multi-Core System
(L1 = 8KB)

the improvement degradation becomes more stable. The average improve-

ments of our proposed mapping flow for W1, W2, and W3 are 13.58◦C,

11.23◦C, and 9.88◦C respectively. The experiments indicate that the design

of cache architecture is very important to 3D memory designs since it directly

affects the memory access behavior.

3.4.3 Experiments for Segment Merging

In this section, the tradeoff between the value of L and the quality of mapping

result is discussed. The single-core system model introduced in Section 3.4.1

is used in this section. The frequency of the processor and memory utiliza-

tion ratio are set to 800 MHz and 75% respectively. Different values of L are

tested. Experiments are performed on a Linux workstation with Intel Pen-

tium 4 3.4 GHz CPU and 2 GB memory. For different values of L, the highest

temperature and the computation time are summarized in Figure 3.15 and

Table 3.3.

76

M_1
M_2

Figure 3.15: The Highest Temperature for Different Values of L

70

72.5

75

77.5

80

tT
em

pe
ra
tu
re

of
or
y
Sy
st
em

(
)

60

62.5

65

67.5

70

72.5

75

77.5

80

L = 4 L = 6 L = 8 L = 10 L = 12 L = 14 L = 16

H
ig
he

st
Te
m
pe

ra
tu
re

of
M
em

or
y
Sy
st
em

(
)

Figure 3.16: The Highest Temperature for Different Values of L when the
Configurations of all Groups are Restricted

77

Two dash lines which represent the highest temperatures of M 1 and

M 2 (straightforward mappings) are depicted in Figure 3.15 for comparison.

When the values of L are set to 4 and 6, little improvement is observed.

This is because the granularity of the merging scheme is too coarse-grained.

Segments that have high access frequencies are merged with segments with

relatively low access frequencies. Our proposed mapping flow can not accu-

rately map all segments that have high access frequencies to physical loca-

tions with better heat dissipation. Therefore, the improvement is limited.

As the value of L increases, only segments with less difference in access fre-

quency are allowed to be merged. Better mapping results can be obtained.

When the value of L is set to 12, segments are merged with sufficiently fine

granularity. According to Figure 3.15, increasing the value of L to be greater

than 12 results in only small improvement. For the memory system model

in our experiments, setting the value of L to 12 is sufficient to provide good

solutions.

A further analysis on the mapping results explains the relation between

the value of L and the organization of the memory system. For example, if

the configuration of each group is restricted to Configuration II in our model,

smaller value of L may be sufficient. When a group is configured as Configu-

ration II, all sets have identical thermal behaviors in that group. Therefore,

the improvement due to the mapping from segments to sets in each group is

minor. Figure 3.16 shows the experimental results for different values of L

when the configurations of all groups are set as Configuration II. Compared

to Figure 3.15, Figure 3.16 shows the similar temperature reduction when L

is increased from 4 to 10. This part of improvement explains that the map-

78

Table 3.3: Computation Time

L #segment #var. Computation Time

4 93 2980 9 min 27 sec

6 102 3268 12 min 3 sec

8 117 3748 18 min 46 sec

10 133 4260 25 min 19 sec

12 157 5028 33 min 54 sec

14 179 5732 45 min 12 sec

16 204 6532 1 hr 3 min 7 sec

ping from segments to groups is performed correctly. Comparing Figure 3.15

and 3.16 shows that, when the value of L is increased from 10 to 14, fur-

ther improvements can be obtained only in Figure 3.15. This is because the

mapping from segments to sets in each group is allowed. These two experi-

ments also show that the mapping from segments to groups provides major

improvement in our proposed mapping flow.

For different values of L, the number of the segments after merging, the

number of integer variables in the ILP formulation, and the computation

time for the ILP solver are listed in Table 3.3. The number of integer vari-

ables in the ILP formulation increases linearly with the number of segments.

Therefore, reducing the number of segments can effectively reduce the num-

ber of integer variables as well as the computation time. In general, ILP

formulation can be solved in less than 1 hour when the value L is less than

16.

79

Chapter 4

TSV Redundancy:
Architecture and Design Issues
in 3D IC

3D integration techniques are proposed as solutions to overcome the scaling

limit [44] [45]. 3D technology provides many benefits including high density,

high band-with, low-power, and small form-factor [46]. However, the in-

creased power density and the complexity of fabrication process significantly

degrades the reliability of systems. To address these problems, considerable

amount of research has been conducted. It can be roughly classified into two

categories. The first one focuses on possible execution-time failures of 3D ICs.

Thermal problem and power/ground variation fall in this category [49]∼ [62].

The second category focuses on recovery mechanisms to cope with the faults

caused in manufacturing processes [63]∼ [65].

In this chapter, the recovery of failed Through-Silicon Vias (TSVs) is

discussed. TSV provides communication links for dies in vertical direction

and is a critical design issue in 3D integration. Just like other components,

80

the fabrication and bonding of TSVs can fail [47] [48]. A failed TSV can

severely increase the cost and decrease the yield as the number of dies to be

stacked increases. To improve the yield, some recovery mechanism for faulty

TSV is needed. A simple but effective solution is to add redundant TSVs to

replace failed TSVs.

A redundant TSV architecture with reasonable cost is proposed in this

chapter. Our proposed redundant TSV scheme is scalable and can be ad-

justed to fit the failure rate of TSV for different TSV processes and bonding

technologies. Given the failure rate of TSV and the number of TSVs required,

probabilistic models are presented to compute the number of redundant TSVs

that should be allocated so that an expected assembly yield can be achieved.

Related design issues and design flow are discussed. The proposed redundant

TSV design can successfully recover most of the failed chips and increase the

yield to 99% based on probabilistic models.

The rest of this chapter is organized as follows. First, previous work

related to reliability issues of 3D IC is reviewed in Section 4.1. Then, in

Section 4.2, the yield of TSV-based 3D IC is discussed. In Section 4.3, the

proposed architecture for TSV redundancy and circuits for TSV testing are

introduced. Then, in Section 4.4, the recovery rate and the number of redun-

dant TSVs required for the proposed architecture are analyzed. Probabilistic

model is used for evaluation. Next, the comparison between our proposed re-

dundant TSV scheme and those in previous work is presented in Section 4.5.

The design issues for timing and design flow are explained in Section 4.6.

81

4.1 Previous Work

Considerable amount of research has been conducted to improve the relia-

bility of 3D IC. Due to the increased power density of 3D designs, thermal-

aware physical design flow and related algorithms are intensively studied re-

cently. In floorplan and placement stages, algorithms are developed to reduce

power density [49]∼ [52]. Thermal problem in 3D IC can also be alleviated

through the allocation of thermal vias [55]∼ [59]. By assigning thermal vias

to high-power-density regions, thermal conducting problem can be improved.

Algorithms for synthesis and optimization of power network for 3D IC are

proposed to reduce power/groud variation [60] [61]. TSVs for power delivery

can also be used for heat dissipation and therefore can be treated as thermal

vias [58] [62].

Another category of research on reliability of 3D IC is the recovery of

failed TSVs. A simple but effective solution to recover faulty TSVs is to

use redundant TSVs. This idea has been realized in 3D DRAM designs [63],

where for every 4 signals, 6 TSVs are allocated as a group. For each group, a

switching box is used to select 4 TSVs for signal transfer. The advantage of

this structure is that the delays of all signals are almost identical. This is an

attractive property for DRAM designs. However, the cost is too expensive

for ASICs since 50% additional TSVs are required. Another fault tolerance

scheme that utilizes redundant TSVs aims at 3D network-on-chip (3DNoC)

links [64]. In this work, TSVs are used to implement vertical interconnects

between network switches on different tiers. For each network switch, 38

signal TSVs (32 data signals and 6 flow control signals) are allocated with 4

82

Table 4.1: Comparison of the Redundant TSV Schemes Proposed in Previous
Work

Redundant Hardware Hardware
Design

TSV #R TSV for TSV for
Type

Scheme Recovery Testing

Switching Switching Circuits for open-short
Memory

Box in 3D 50% box circuits tests, latches, and
designs

DRAM [63] and e-fuses scan-chain circuits

Fault Tolerance MUXs for signal 4 groups of scan-chain Designs with
Scheme for 10.53% redirection circuits controlled by dedicated 3DNoC
3DNoC [64] and e-fuses FSM in each network switch structure

The Twins
100% Not required Not required No constraint

Structure [65]

redundant TSVs. With this structure, the yield can be increased from 68%

to 98% when 100K TSV links and 9.87 Defect Per Million Opportunities are

assumed. This structure is effective. However, it is not good for other types

of designs. The twins structure proposed by HRI [65] realizes each vertical

interconnect as a pair of TSVs. In this redundancy scheme, the connectivity

of a vertical link is maintained unless both TSVs of that link are failed. The

yield can be largely increased. However, the number of TSVs is doubled. A

comparison of these redundant TSV schemes are summarized in Table 4.1.

4.2 Failure Rate Analysis for TSV-Based 3D

Designs

For different 3D integration technologies, different manufacturing processes

are required and different yield rates can be observed. Currently, we cannot

find a complete comparison of TSV failure rates among different bonding

and process technologies. However, depending on the manufacturing pro-

cesses required by different 3D integration technologies, causes for failure in

83

each process can be compared. In the following discussion, different bonding

and process technologies are compared based the manufacturing processes

required.

1. Face-to-Face Bonding: As compared with other 3D bonding tech-

nologies, face-to-face bonding leads to minimum changes of modern

IC manufacturing processes. Since vertical interconnects are realized

by bond pads above device and metal layers, no TSVs are required.

Therefore, the failure caused by TSVs manufacturing can be avoided.

The bonding process technology for face-to-face bonding is quite ma-

ture since similar technology has been used in modern IC package in-

dustry. In terms of yield, face-to-face bonding technology outperforms

other bonding technologies that require TSVs for vertical interconnects.

However, this bonding technology allows at most two layers of circuits

to be integrated.

2. Face-to-Back Bonding: When face-to-back bonding technology is

used for 3D integration, TSVs are required for vertical interconnects.

Depending on when the processes for TSV take place, three process

scenarios, via-first, via-middle, and via-last are proposed. The pros

and cons of these process scenarios in terms of fabrication yield are

summarized as follows.

(a) Via-First: In via-first approach, TSVs are fabricated before front

end of line. This means, when the processes of device layers take

place, TSV are already presented. The processes of device layer

may cause contamination or worsening of TSVs [48]. This problem

84

makes the electric behavior of TSVs in via-first approach more

unstable as compared with other two approaches.

(b) Via-Middle: When the processes of TSVs take place between

front end of line and back end of line, the contamination and

the worsening problems can be avoided. However, the mechanical

stress and the thermal expansion problems caused by the processes

of TSVs may damage the components on device layer. To solve

this problem, low-temperature processes and/or metallization ma-

terial other than copper (ex: tungsten) are required. However,

this may cause other defect features for TSV forming due to the

immaturity of process technology.

(c) Via-Last: For via-last approach, processes of TSVs are performed

after back end of line. Instead of deep reactive-ion etching (DRIE)

method which is commonly used in via-first and via-middle ap-

proaches, laser drilling is usually required for TSV forming in via-

last approach [48]. In general, laser drilling results in larger TSVs

due to the size of laser beam. This aggravates mechanical stress

and thermal expansion problems. Moreover, when laser drilling is

used in TSV forming process, the sidewall of TSV cannot be as

smooth and straight as that created by DRIE [48]. The silicon de-

bris splashed from the melted wafer also leads to additional clean-

ing problem since this debris cannot be removed with traditional

cleaning process [48]. The above mentioned facts increase the dif-

ficulty of deposition and metallization. The uniformity caused

by shot-to-shot laser energy stability leads to the variation in the

85

dimension of TSVs [74]. Finally, the thermal effect generated

by a laser beam can affect or damage the components on device

layer [48].

In addition to the failure mechanisms mentioned above, failure of TSV is a

primary reason that causes 3D designs to fail.

In general, the size of a TSV is much larger than other on-chip devices.

This leads to certain unique defect features for TSV forming [66]. For ex-

ample, during metallization process, void may be formed [68]. After the

fabrication of TSVs, wafer thinning is performed. Presently, most 3D IC

processes require each tier to be less than 100μm [48]. The surface rough-

ness is an important factor to the yield of later TSV bonding stage. When

the dies of consecutive tiers are stacked, the TSVs of the die in upped tier

need to be bonded to the bond pads of the die on lower tier, as shown in

Figure 4.1. Due to the alignment problem, a bond pad is required for each

TSV [67] [68]. In addition to misalignments, TSVs can also fail in the sol-

dering process [69]. Other failure mechanisms such as dislocation, process

variations or mechanical stress also decrease the fabrication yield of TSVs.

Recent research has pointed out that misalignment and failures on bond-

ing are primary failure mechanisms for TSVs [69]. Both of the technologies

are very similar to the packaging methods used in current IC industry [48].

Although the exact failure rate of TSVs is still not clear, the failure rates

of alignment and bonding can be used to perform a failure rate analysis for

TSV. Considering the TSV diameter and the size of bond pads, the failure

rate of a single TSV may ranges between 10−4 and 10−5 based on current

packaging technology. This assumption roughly meets the yields of TSVs

86

TSV TSVUpper Tier

Lower Tier

Figure 4.1: Bonding between TSVs and Bond Pads for 2-Tier 3D IC

from the process technologies of HRI, IMEC and IBM [70] [71] [72].

According to the type of application, the number of TSVs in each tier can

be quite different. For many-core processors or NoC-based designs, thousands

of TSVs may be required in each tier. On the contrary, hundreds of TSVs

may be sufficient for smaller IP-based designs. To consider both cases, we

assume that the number of TSVs to be placed in a tier ranges from 1000 to

10000 for many-core processors or NoC-based designs, and 300 to 1000 for

IP-based designs.

An analysis between failure rate and yield is given in Figure 4.2. Assume

that all dies to be stacked are good dies. Thus, only the failure rate of TSV

bonding needs to be considered. Let f stands for the failure rate of bonding

one TSV and #tier stands for the number of tiers to be stacked. The x-axis

represents the number of TSVs to be placed in each tier (#TSV). Since a

good chip stack requires all TSVs to be successfully bonded, the binding

yield can be computed as (1− f)#TSV×(#tier−1).

87

(a)

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

%
 o

f c
hi

p
st

ac
ks

 w
ith

 n
o

fa
ile

d
T

SV

#TSV

#tier = 2, f = 0.0001
#tier = 2, f = 0.00005
#tier = 2, f = 0.00001
#tier = 5, f = 0.0001
#tier = 5, f = 0.00005
#tier = 5, f = 0.00001

60%

65%

70%

75%

80%

85%

90%

95%

100%

300 400 500 600 700 800 900 1000

%
 o

f c
hi

p
st

ac
ks

 w
ith

 n
o

fa
ile

d
T

SV

#TSV

#tier = 2, f = 0.0001
#tier = 2. f = 0.00005
#tier = 2, f = 0.00001
#tier = 5, f = 0.0001
#tier = 5, f = 0.00005
#tier = 5, f = 0.00001

Figure 4.2: Yield Analysis: (a) #tier = {2, 5}, #TSV = 300∼1000; (b)
#tier = {2, 5}, #TSV = 1000∼10000

88

The analysis results for f = {0.0001, 0.00005, 0.00001}, #tier = {2,
5}, and #TSV = {300∼1000, 1000∼10000} are shown in Figure 4.2. In

Figure 4.2(a), #TSV ranges from 300 to 1000. When #tier equals 2 and

5, the average yields are 96.63% and 87.59%, respectively. When #TSV

ranges from 1000 to 10000, the average yields degrade to 77.18% and 46.60%

as shown in Figure 4.2(b). Even when f = 0.00001, the yield falls below 95%

when #TSV ≥ 6000. From the analysis results in Figure 4.2, we can see

that even if there are only two tiers, the yield may fall below 95% when f or

#TSV is large. When #tier is increased, the yields degrade further.

Note that the dies to be stacked are assumed to be good dies. The cost of

discarding chip stacks due to failures on TSV bonding is very expensive. In

fact, in most failed chip stacks, only a very small portion of TSVs are failed.

If these failed TSVs can be recovered with reasonable cost, the yield can be

largely improved. The redundant TSV design to be proposed in this chapter

provides a solution to this problem.

4.3 Redundant TSV Architecture

4.3.1 Architecture Design

The proposed architecture for redundant TSV is depicted in Figure 4.3. For

each TSV, 2 configuration MUXs are added to shift the signal to neighboring

TSV when one TSV is failed. The TSVs are connected as a chain where the

redundant TSV is placed at the last position of the chain. When no TSV is

failed, all signals are transferred by original TSVs. When a TSV is failed, the

signal of the failed TSV needs to be shifted. This in term causes all signals

89

0 10 1

TS
V_

0

TS
V_

1

R_
TS

V

0 1

TS
V_

2

0 1

TS
V_

3

0 10 1 0 1

Scan Chain Based Testing Circuits

Test Signal Generating Circuits

in_0 in_1 in_2 in_3

out_0 out_1 out_2 out_3

Configuration MUXs

Configuration MUXs

Receiver End

Sender End

0 1

Figure 4.3: Architecture for Redundancy TSV

between the failed TSV and the redundant TSV to be shifted. For example,

let TSV 1 be failed. The selection inputs of configuration MUXs for TSV 0,

TSV 1, TSV 2 and TSV 3 are set to 0, 1, 1 and 1, respectively. The signal

paths after shifting are shown in Figure 4.4. When a signal is shifted, larger

delay is introduced due to larger wire length and buffers. In this architecture,

only one failed TSV can be recovered in each chain. Therefore, how to

determine the number of TSVs in a chain so that an acceptable recovery

rate can be achieved is an important design issue. For simplicity, the term

TSV-chain is used to refer to the structure of the proposed redundant TSV

architecture.

The configuration MUXs in the proposed architecture are connected to

an e-fuse array. By default, all signals connect to the configuration MUXs

are set to 0. The testing circuits to be explained in Section 4.3.2 is used to

90

0 10 1

TS
V_

0

TS
V_

1

R_
TS

V

0 1

TS
V_

2

0 1

TS
V_

3

0 10 1 0 1

out_0 out_1 out_2 out_3

in_0 in_1 in_2 in_3

FAILED

Figure 4.4: TSV Recovery Mechanism: TSV 1 is failed and TSV 1, TSV 2,
and TSV 3 are shifted right one position

check the connectivity of each TSV. When the testing for TSV connectivity

is done, the e-fuse array is programmed so that each configuration MUX

receives an appropriate control signal.

The redundant TSV of each TSV-chain is not necessary to be located

at the end position of the chain. By replacing the 2-1 configuration MUX

with a 3-1 MUX, the redundant TSV is allowed to be located in the middle

of the chain. The benefit of locating the redundant TSV in the middle of

the chain is that the number of signals shifted can be reduced. However, the

signal transferred by the redundant TSV will suffer larger delay due to a 3-1

MUX. Therefore, in this chapter, we restrict the redundant TSV to the end

position of the chain.

91

test mode

clock

s_input
EN

CLK

D Q

EN

CLK

D Q

signal to
TSV_0

0 1 0 1

signal to
TSV_1

in_0 in_1

0 1

signal to
TSV_N

in_N

shift-in mode

Figure 4.5: The Testing Circuits on the Sender End

4.3.2 Testing Circuits

The objective of the testing circuits is to test all TSVs and locate failed TSVs.

The test results are used to program the selection inputs of configuration

MUXs. The overall testing structure can be seen in Figure 4.3. On the

sender end, circuits are added to generate test signals for each TSV, and

on the receiver end, scan chain based circuits are added to capture the test

signals. For each TSV-chain, both the signal TSVs and the redundant TSV

are tested by our proposed testing structure. The testing circuits on the

sender end and the receiver end are shown in Figure 4.5 and Figure 4.6,

respectively. During the test, the selection inputs of the configuration MUXs

on both sender and receiver ends are set to 0. The detailed testing mechanism

is explained as follows.

For each TSV, both signals 0 and 1 are required to be tested. If both

signals are transferred by a TSV correctly, the TSV is considered to be fault-

less. Let the testing circuits on the sender end generate toggled signals in two

92

1

0

0 1

EN

CLK

D Q

test mode

clock

shift-out mode

scan-in

out_0

compare mode

Receiver End Testing Circuit for TSV_0

signal from
TSV_0

0 1

...

...

...

...

...

...

1

0

0 1

EN

CLK

D Q

Receiver End Testing Circuit for TSV_1

signal from
TSV_1

out_1

0 1

Figure 4.6: The Testing Circuits on the Receiver End

consecutive cycles. The testing circuits on the receiver end need to capture

and record the signals sent by the testing circuits on the sender end, and

shift-out the test results.

The testing circuits on the sender end shown in Figure 4.5 is described

as follows. The MUXs on the upper part are used to select the signals to

be transferred by TSVs in normal or test mode. When test mode = 0 in

normal mode, signals are normal inputs and when test mode = 1 in test

mode, signals are test inputs from flip-flops. The test signals in test mode

are stored in flip-flops. Since no signals need to be captured on the sender

end, it is not necessary to assign each TSV a dedicated flip-flip. Instead,

we let multiple TSVs be grouped together to share the signal stored in one

flip-flop. The number of TSVs in a group to be driven by one flip-flop is

determined by the driving capability of the flip-flop. In the data shift-in

mode, s input is connected to a toggling signal which changes its value every

93

cycle. This allows the values stored in flip-flops of two neighboring groups

to be different.

On the receiver end, the test results of all TSVs are used to program the

selection inputs of the configuration MUXs in our proposed redundant TSV

architecture. The circuits in Figure 4.6 are modified from traditional scan-

chain circuits. The testing circuits for each TSV are surrounded by a dotted

frame. In Figure 4.6, the testing circuits for two TSVs, TSV 0 and TSV 1

are depicted. For test circuit of a TSV, the devices in gray color are the

components of traditional scan-chain circuits. The DEMUXs on the lower

part are used to direct the signals transferred by TSVs. When test mode =

0 in normal mode, signals received by TSVs are normal signals. When test

mode = 1 , signals received by TSVs are test signals. The MUXs in gray

color are used to select the signals from TSV for testing or from neighboring

flip-flop for shift-out.

The MUX and XNOR gates in front of the flip-flop provide the ability to

perform an XNOR operation of the value received from TSV in the current

cycle and the value stored in the flip-flop received in the previous cycle. If

both signals are received correctly, the result of the XNOR operation in the

second cycle should be 0. If the output of the XNOR gate is 1, one of the

received signal must be incorrect. This indicates that the TSV under testing

is failed. Note that the proposed circuits cannot identify a fault if both test

signals are toggled. However, a failed TSV is similar to a broken wire. It is

not likely to invert both signals 0 and 1. In general, for a failed TSV, the

same values will be observed in two cycles.

Let the number of groups (flip-flops) on sender end be n and the number

94

of flip-flops (i.e., the number of TSVs) on the receiver end be m. The overall

testing process and the values of the control signals are shown as follows.

Shift-In Stage I:

{test mode = 0, compare mode = 0, shift-in mode = 1, shift-out mode = 0}
The signal s input on the sender end toggles every cycle. The values

of flip-flops on the receiver end are shifted-in in n cycles.

Capture Stage:

{test mode = 1, compare mode = 0, shift-out mode = 0} The test signals

on the sender end are received by TSVs. The flip-flops on the receiver

end capture the transferred signals in one cycle.

Shift-In Stage II:

{shift-in mode = 1} In this stage, one more signal is shifted in on the sender

end in one cycle. This causes the values stored in all flip-flops on the

sender end to be toggled. This shift-in can be executed at the same

cycle for Capture Stage.

Compare Stage:

{test mode = 1, compare mode = 1, shift-in mode = 0, shift-out mode = 0}
For each TSV, a toggled test signal is received. The signal is XNORed

with the value stored in the flip-flop. The output of XNOR gate is then

captured by the flip-flop in one cycle.

Shift-Out Stage:

95

{test mode = 1, compare mode = 0, shift-in mode = 0, shift-out mode = 1}
The values stored in the flip-flops on the receiver end are shifted out in

m cycles.

The shifted-out bit strings contain the test results of all TSVs. A 0 stands

for a faultless TSV and a 1 for a failed one. For each TSV-chain, if more than

one bit is set to 1, the whole chip stack needs to be discarded. Otherwise, the

bit strings are used to program the e-fuse array so that each configuration

MUX receives proper control value.

4.3.3 TSV Block and TSV-Chain

Due to manufacturing and physical design issues, TSVs are not recommended

to be placed arbitrarily on a plane. From the aspect of manufacturing, a

regular placement of TSVs improves the exposure quality of the lithographic

process and therefore improves the yield. In real designs, TSVs are suggested

to be placed regularly in TSV blocks which are determined in floorplan stage.

Inside each TSV block, TSVs are arranged in a grid-based structure to sat-

isfy the pitch constraint. Examples of TSV blocks are shown in Figure 4.7.

Obviously, it is undesirable for a TSV-chain to contain TSVs of different

TSV blocks due to long wires for signal shifting. Therefore, a TSV-chain

in our design is suggested to contain TSVs in the same TSV block.

Moreover, we let each TSV block contain only one redundant TSV. This

means, for each TSV block, only one TSV-chain is defined. Nevertheless,

in terms of recovery rate, the number of TSVs in a TSV-chain needs to be

limited. In case the number of TSVs in a TSV block is too large for one

TSV-chain, the TSV block needs to be partitioned to a number of smaller

96

Figure 4.7: TSV Blocks

TSV blocks.

The design issues of our proposed TSV-chain are listed as follows:

• Determine the number of TSVs in each TSV block

• Determine the path to link the TSVs in a TSV block as a chain

The first problem is related to the recovery of a 3D design. In Section 4.4, an

analysis based on probabilistic model is performed to answer this question.

The second problem is related to the timing behavior of shifted signals. Dis-

cussions on timing issues and guidelines for TSV-chain design are presented

in Section 4.6.

4.4 Recovery Rate Analysis

In this section, the relation between the number of TSVs in each TSV block

and the recovery rate is analyzed based on probabilistic models. First, based

on the failure rate of a single TSV, the expected number of TSVs that may

fail in a tier can be computed. Next, for an expected number of failed TSVs

97

in each tier, the required number of TSV-chains as well as the size limit of

each TSV block are discussed.

Let F and #TSVtier stand for the failure rate of a single TSV and the

number of TSVs in a tier. The probability that exact n TSVs are failed

in a tier can be expressed as Equation (4.1) where C#TSVtier
n represents the

number of combinations of #TSVtier TSVs with n of them failed and F n ·
(1−F)#TSVtier−n represents the probability of n chosen TSVs are failed while

other #TSVtier − n TSVs are not.

Pf tsv=n = C#TSVtier
n × (F n · (1− F)#TSVtier−n) (4.1)

Next, the term C Ration is defined as the probability that the number of

failed TSVs is no greater than n, including the faulty free condition (that is,

n = 0). This can be computed by accumulating Pf tsv=i for 0 ≤ i ≤ n and

can be expressed as Equation (4.2).

C Ration =

n∑

i=0

Pf tsv=i (4.2)

As long as the value of C Ration is large enough, we can assume that the

maximum number of failed TSVs in a tier is n. For example, when n = 2

and #TSVtier = 500, the value of C Ration is 99.998%. This means, when

500 TSVs are allocated in a tier, the probability that three or more TSVs

are failed is less than 0.0020%. Assume that the maximum number of failed

TSVs in a tier is 2. It covers 99.998% of all possible faulty free and faulty

situations. In our recovery rate analysis, a high C Ration is expected. Given

the desired value of C Ration, the minimum value of n increases with the

value of #TSVtier. Assume that the value of C Ration is expected to be

98

6

4

5

6

e
of

 n
3

4

5

6

m
 v

al
ue

 o
f n

2

3

4

5

6

ni
m

um
 v

al
ue

 o
f n

1

2

3

4

5

6

m
in

im
um

 v
al

ue
 o

f n

0

1

2

3

4

5

6

m
in

im
um

 v
al

ue
 o

f n

0

1

2

3

4

5

6

m
in

im
um

 v
al

ue
 o

f n

#TSV (number of TSVs in a tier)

0

1

2

3

4

5

6

m
in

im
um

 v
al

ue
 o

f n

#TSV (number of TSVs in a tier)

Figure 4.8: The Minimum Values of n for #TSVtier = {300∼10000}
(C Ration > 99.9%)

greater than 99.9%, the minimum value of n for #TSVtier = {300∼10000}
is depicted in Figure 4.8. In the rest of this section, for different values of

#TSVtier, the maximum number of failed TSVs in a tier is assumed according

to Figure 4.8 and is referred as #F TSVmax.

As mentioned in Section 4.3, each TSV-chain is capable of recovering at

most one failed TSV in a TSV block. As the number of TSVs in a TSV block

increases, the probability that all failed TSVs can be recovered decreases. To

achieve an expected recovery rate, the number of TSVs in each TSV block

must be constrained. To simplify the analysis, we assume that the number

of TSVs in all TSV blocks are identical. Let #B TSV stand for the number

of TSVs in each TSV block. For a given value of n, we want to analyze the

relation between #B TSV and recovery rate. For a given value of #TSVtier,

the analysis for n = {1∼ #F TSVmax} is performed.

The number of combinations of #TSVtier TSVs with n failed TSVs can

99

be computed as C#TSVtier
n . The number of combinations that all failed TSVs

can be recovered by TSV-chains is referred as #Recoverable Comb. The

recovery rate discussed in this section is defined as

#Recoverable Comb

C#TSVtier
n

.

When n = 1, only one failed TSV needs to be recovered. Since each TSV

block contains one redundant TSV, the failed TSV can always be recovered.

Thus, the recovery rate is 100%.

The recovery rate analysis for n ≥ 2 is more complicated. Let the term

#Block represent the number of TSV blocks in a tier. Under our assump-

tions, #Block can be computed as #TSVtier

#B TSV
. To successfully recover all failed

TSVs, each failed TSVs must be located in different TSV blocks. That is,

n TSV blocks are selected from #Block TSV blocks. Each selected TSV

block contains exactly one failed TSV. The number of combinations can be

computed as

C#Block
n .

Inside each TSV block that contains one failed TSV, the failed TSV can be

located at #B TSV possible positions. Therefore, the #Recoverable Comb

can be computed as

C#Block
n · (#B TSV)n.

For #TSVtier = 500, the value of #F TSVmax is 2. The relation between

#B TSV and recovery rate for #TSVtier = 500 and n = 2 is shown in

Figure 4.9. For different values of #B TSV that result in the same #Block,

only the smallest #B TSV is shown.

100

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

ec
ov

er
y

R
at

e

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

25 26 27 29 31 33 35 38 41 45 50 55 62 71 83 100 125 166 250

R
ec

ov
er

y
R

at
e

Number of TSVs in a TSV Block

Figure 4.9: Recovery Rate when #TSVtier = 500, n = 2

According to Figure 4.9, to achieve 90% recovery rate, #B TSV needs to

be no greater than 50. By limiting the number of TSVs in each TSV block

to be less than or equal to 50, the recovery rate is greater than 90%. To

achieve a higher recovery rate, the figure shows that with 95% recovery rate,

the number of TSVs in each TSV block cannot be greater than 25. In real

designs, if the number of TSVs in a TSV block is too large to satisfy the

constraint, a large TSV block is partitioned into a number of smaller TSV

blocks.

Similar analysis are performed for different values of #TSVtier. The lim-

its on #B TSV for #TSVtier = {300∼10000} when n = #F TSVmax are

shown in Figure 4.10. In Figure 4.10, a number of dash lines are depicted to

denote the increase on #F TSVmax. When #F TSVmax is given, the allowed

maximum value of #B TSV increases linearly with the value of #TSVtier.

When #F TSVmax is increased, the allowed maximum value of #B TSV

101

0

50

100

150

200

250

300

350

400

450

M
ax

im
um

 #B
_T

SV
Va

lu
e

90%Recovery Rate for n = #F_TSVmax

95%Recovery Rate for n = #F_TSVmax

#F
_T
SV

m
ax
=
1

#F
_T
SV

m
ax
=
2

#F
_T
SV

m
ax
=
3

#F
_T
SV

m
ax
=
4

#F
_T
SV

m
ax
=
5

Figure 4.10: Limits on #B TSV

drops dramatically. In the worst case (#TSVtier = 500), to achieve 90% and

95% recovery rates, the allowed maximum values of #B TSV are 25 and 50,

respectively.

A further analysis is to compute the overall yield. For given value of

#TSVtier and the maximum value of #B TSV , the recovery rate for n can

be computed. Let R Rate(#TSVtier ,n,#B TSV) stand for the recovery rate for

given #TSVtier, n and #B TSV . The overall yield can be computed as

Equation (4.3).

Y ield(#TSVtier , n, #B TSV) = Pf tsv=0 +

#TSVtier∑

n=1

Pf tsv=n × R Rate(#TSVtier , n, #B TSV) (4.3)

Since the value of Pf tsv=n is very small when n > #F TSVmax, we can

102

rewrite the function as Equation (4.4).

Y ield(#TSVtier , n, #B TSV) = Pf tsv=0 +

#F TSVmax∑

n=1

Pf tsv=n ×R Rate(#TSVtier , n, #B TSV) (4.4)

For example, when #TSVtier = 500, the value of #F TSVmax is 2. Using

Equation (4.1), the values of Pf tsv=0, Pf tsv=1, and Pf tsv=2 can be computed

as 95.1227%, 4.7566%, and 0.1187%, respectively. The recovery rate for n = 1

is 100% based on our proposed architecture. Let the recovery rate for n = 2

be set to 90%. The overall yield can be computed as

Pf tsv=0 + Pf tsv=1 × 100%+ Pf tsv=2 × 90% = 99.98613%.

A complete analysis on the overall yields for #TSVtier = {300∼10000} is

presented in Figure 4.11. Similar to Figure 4.10, regions partitioned by dash

lines denote the increase in #F TSVmax. In all cases, the yields are higher

than 99.4%. Another observation is that, increasing the recovery rate for n

= #F TSVmax from 90% to 95% only results in limited improvement on the

overall yield. Therefore, setting the recovery rate for n = #F TSVmax to 90%

is sufficient in most cases. Considering the analysis results in Figures 4.10

and 4.11, limiting the number of TSVs in each TSV block to be no greater

than 50 results in yields higher than 99.4%.

4.5 Comparison with Previous Work

4.5.1 Experiment Setup

To understand the overheads of different redundant TSV schemes, a pseudo

TSV model needs to be assumed so that the timing and power behaviors of

103

99.1%

99.2%

99.3%

99.4%

99.5%

99.6%

99.7%

99.8%

99.9%

100.0%

100.1%

O
ve

ra
ll

Y
ie

ld

90%Recovery Rate for n = #F_TSVmax

95%Recovery Rate for n = #F_TSVmax

#F
_T
SV

m
ax
=
1

#F
_T
SV

m
ax
=
2

#F
_T
SV

m
ax
=
3

#F
_T
SV

m
ax
=
4

#F
_T
SV

m
ax
=
5

Figure 4.11: The Overall Yields

each redundant scheme can be evaluated. In our evaluation, the parameters

of TSV are defined based on via-first/via-middle TSV processes with face-to-

back bonding technology. The parameters of the TSV used in our evaluation

are summarized in Table 4.2.

Currently, copper is still the most widely used material for metallization

Table 4.2: TSV Parameters in Our Evaluation

Parameter Value

Material for Metallization Copper (Cu)
TSV Diameter (d) 8μm
TSV Height (h) 50μm

Material of Dielectric Layer Silicon Dioxide (SiO2)
Thickness of Dielectric Layer (tox) 0.15μm

104

due to its mature process technology. Thus, copper is selected as the met-

allization material for TSV in our assumption. For via-first or via-middle

processes, the diameter, d, of a TSV ranges from 3μm to 20μm [75]∼ [78]. In

our evaluation, the value of d is assumed to be 8μm. The height, h, of a TSV

is identical to wafer thickness after thinning process. Presently, the value of

h is less than 100μm in modern 3D IC processes [48]. Modern technology

allows the value of h to be decreased to 30μm [75] [78]. In our assumption,

the value of h is set to 50μm. Silicon dioxide is selected as the dielectric

material for TSVs. The sidewall thickness, tox, is reported to range from

0.1μm to 1μm [75] [79] [80]. For TSVs with smaller diameters, it is techni-

cally difficult to obtain a larger value of tox due to the process technology of

deposition [81]. In our assumption, the value of tox is set to 0.15μm.

Since TSVs are very large as compared with metal wires, the resistance of

TSVs can be ignored. The capacitance of a TSV is determined by the dimen-

sion and the property of dielectric material. According to the parameters in

Table 4.2, the capacitance of a TSV can be computed using Equation (4.5)

where εr and ε0 are the relative dielectric constant of silicon dioxide and the

permittivity of vacuum. The radius of TSV, rtsv, can be computed as d/2.

Ctsv =
2πεrε0h

ln((rtsv + tox)/rtsv)
(4.5)

The value of εr is dependent on process technology. In modern industry, the

value of εr ranges from 3.5 ∼ 3.9 [82] [83]. In our evaluation, the value of εr is

assumed to be 3.7. The capacitance of a TSV can therefore be computed as

278fF. The loading capacitance caused by bond pad and soldering material

is very small (< 1fF) and can be neglected [84].

105

For simplicity, we refer the TSV structure where each vertical intercon-

nect is realized by one TSV as the single TSV structure. The single TSV

structure is used in the redundant TSV scheme proposed in this chapter and

the switching box method. For the twins structure proposed by HRI, each

vertical interconnect is realized by a pair of TSVs [65]. Therefore, the loading

capacitance of the twins structure is doubled.

Since the loading capacitance of TSVs is very large as compared with the

loading capacitance of 2D wires, buffers are required to drive TSVs. In our

evaluation, buffers of different sizes (2X∼16X) in 90nm CMOS technology are

tested. Assume that the input transition time is set to 0.1ns. The relation

between output loading capacitance and output transition time is shown

in Figure 4.12. Two dash lines denoted as CSingle and CTwins in Figure 4.12

represent the loading capacitance of the single TSV and the twins structures.

Let the loading capacitance of the wires connected to the TSV, and the

input pins connected to these wires be denoted as CiLoad. For CSingle and

CTwins, two dotted lines for CiLoad = 15fF and CiLoad = 50fF are drawn. Let

Tmax trans stand for the expected maximum transition time and Tmax trans be

set to 0.1ns, which is the same as the input transition time. According to

Figure 4.12, when CiLoad is small (no greater than 15fF), the minimum buffer

sizes required by the single TSV and twins TSV structures are 6X and 12X,

respectively. When CiLoad is greater than 50fF, the minimum buffer sizes

required by the single TSV and twins TSV structures are increased to 8X

and 16X, respectively. In general, to obtain the same output transition time,

the buffer size required by the twins structure is 1.5∼2 times larger than that

required by the single TSV structure. The buffers required for driving TSVs

106

0.1

0.2
O
ut
pu

tR
is
e
Tr
an

si
tio

n
Ti
m
e
(n
s)

BUF2X
BUF4X
BUF6X
BUF8X
BUF12X
BUF16X

CSingle CTwins

C S
in
gl
e
+
C i

Lo
ad

(1
5f
F)

C S
in
gl
e
+
C i

Lo
ad

(5
0f
F)

C T
w
in
s
+
C i

Lo
ad

(1
5f
F)

C T
w
in
s
+
C i

Lo
ad

(5
0f
F)

0

0.1

0.2

0 0.5

O
ut
pu

tR
is
e
Tr
an

si
tio

n
Ti
m
e
(n
s)

Output Loading Capacitance (pF)

BUF2X
BUF4X
BUF6X
BUF8X
BUF12X
BUF16X

CSingle CTwins

C S
in
gl
e
+
C i

Lo
ad

(1
5f
F)

C S
in
gl
e
+
C i

Lo
ad

(5
0f
F)

C T
w
in
s
+
C i

Lo
ad

(1
5f
F)

C T
w
in
s
+
C i

Lo
ad

(5
0f
F)

Figure 4.12: Relation between Output Loading Capacitance and Rise Tran-
sition Time

lead to overheads of delay, area, and power consumption.

To allow switching box method proposed in 3D DRAM [63] to be used in

general designs, additional testing circuits are required to test the connectiv-

ity of TSVs. In our evaluation, the testing circuits proposed in Section 4.3.2

are added to the switching box design. 3-1 MUXs and 1-3 DEMUXs are used

to construct the switching box circuits as shown in Figure 4.13.

4.5.2 Comparisons of These Methods

In Section 4.5.1, the sizes of the buffers that are required by the single TSV

and the twins structures have been discussed. Since large buffers which are

107

TS
V_

0

TS
V_

1

TS
V_

2

TS
V_

3

Testing Circuits

Testing Circuits

in_0 in_1 in_2 in_3

out_0 out_1 out_2 out_3

Re
ce

iv
er

 E
nd

Se
nd

er
 E

ndTS
V_

4

TS
V_

5

Figure 4.13: Switching Box Implementation in Our Evaluation

used to drive TSVs have large input capacitance, small buffers are used to

drive the large buffers. In the following analysis, we assume that a 1X buffer

is inserted to drive the large buffer for each TSV. Therefore, when CiLoad is

no greater than 15fF, 1X + 6X and 1X + 12X buffer chains are used for the

single TSV and the twins structures, respectively. When CiLoad is between

15fF to 100fF, the 1X + 8X and 1X + 16X buffer chains are used. The

circuits required in the switching box and our method are constructed using

a 90nm CMOS cell library. To accurately evaluate the area overhead of our

proposed redundant TSV scheme, in each TSV block, the number of TSVs

and flip-flops in the testing circuits on the sender end are assumed to be 50

and 10, respectively. According to these assumptions, the overheads of one

TSV in terms of timing, leakage power, and area in different schemes are

summarized in Table 4.3.

In Table 4.3, rows labeled Original refer to TSV structure with no re-

dundancy. In these two rows, only the buffers used to drive the single TSV

structure are considered. The delay caused by buffers and additional control

108

Table 4.3: Overheads of Different TSV Structures in Terms of Delay, Power,
and Area (per TSV)

TSV CiLoad
Timing Leakage Area (NAND2 Gate Count)

Structure (fF)
Delay Power

Circuits
TSV Body

(ns) (pW) 90nm 32 ∼ 45nm

Original (No Redundancy)
≤ 15 0.076792 96102.7 4.25

16 100
15 ∼ 100 0.080204 124962.2 5.25

Twins Structure
≤ 15 0.087096 186281.2 7.25

32 200
15 ∼ 100 0.093229 240402.2 9.25

Switching Box Method
≤ 15 0.239534 190106.8 32.43

24 150
15 ∼ 100 0.242508 220936.5 33.43

Our Method
≤ 15 0.194872 161255.2 28.35

16.32 102
15 ∼ 100 0.196374 186311.4 29.35

circuits in each redundant TSV scheme is listed in column Timing Delay. In

column Leakage Power, the leakage power of active components in normal

mode is computed. The leakage power of testing circuits is ignored because

these circuits are usually power gated in normal mode. The area of differ-

ent TSV structures is summarized in the columns labeled Area expressed as

the numbers of NAND2 gate count. To fairly compare the area overhead of

different TSV structures, the average area overhead for one signal TSV is

computed. Take our proposed method as an example. Let the area for a

TSV block of 50 TSVs be computed where there are 49 signal TSVs and 1

redundant TSV. Then, the area overhead is divided by 49.

The second is the die area occupied by the physical bodies of TSVs. This

area is reported in the columns labeled TSV Body. The area overhead of

TSV body is analyzed as follows. For a TSV of diameter, dμm, the die area

occupied by a TSV is at least d2μm2. In the 90nm CMOS technology, the

size of a 1X NAND gate is about 4μm2. Therefore, the area occupied by

one TSV body is equivalent to d2

4
or more NAND gates. In more advanced

109

process technology, the size of a logic gate is greatly reduced. However, the

size of a TSV is not likely to be reduced due to TSV fabrication. According

to ITRS 2009 edition [73], under 32nm or 45nm process technology, the size

of a 1X NAND gate may ranges from 0.5μm2 ∼ 1μm2. This means, the die

area occupied by one TSV may be equivalent to d2 ∼ 2d2 NAND gates. For

example, when d = 8μm, each TSV is equivalent to 64 ∼ 128 NAND gates.

In Table 4.3, we assume that d = 8μm and each TSV is equivalent to 16

NAND gates in 90nm process technology and 100 NAND gates in 32nm ∼
45nm process technology. Based on these assumptions, the area overhead of

TSV body for one signal TSV is computed as

TSVarea × #TSVall

#TSVsignal
.

This area is reported in the columns labeled TSV Body.

In addition to the die area occupied by the bodies of TSVs, the chip

size of each tier may needs to be increased due to the pitch constraint of

TSVs [48]. In Table 4.3, pitch constraint of TSV is not considered. Through

this analysis, we should understand that the area overhead caused by TSV

can be very large and may dominate the area of each TSV structure.

According to Table 4.3, we can see that our redundant TSV scheme leads

to minimum area overhead as compared with the twins stricture and the

switching box method. As for the overhead of timing delay, our scheme results

in smaller delay as compared with the switching box method. However,

as compared with the twins structure, the timing delay of our proposed

method is larger. In the twins structure, only the delay of buffers are induced.

Although our proposed method leads to smaller buffers for TSVs, additional

110

tsv_4 tsv_3 tsv_2 tsv_1 tsv_0 tsv_rFailed
TSV
tsv_0
tsv_1
tsv_2
tsv_3
tsv_4

1/5 2/5 3/5 4/5 5/5

Figure 4.14: All Possible Shifting Situations for a TSV-chain of Size 6 when
1 TSV is Failed

MUX and DEMUX gates on signal paths results in larger path delay. In terms

of leakage power, our proposed method outperforms the twins structure and

the switching box method. Although the switching box method results in

larger delay and leakage power as compared with the other two methods,

this method provides an unique property where the delays of all signals are

almost identical. This property is desired for special applications.

4.6 Design Flow and TSV-Chain Design

4.6.1 Design Issues for Timing

When a TSV is failed, according to the position of the failed TSV in a

TSV-chain, one or more signals need to be shifted. Due to the chaining

structure, even under the assumption that each TSV has identical failure

rate, the probability for each TSV to be shifted varies. Figure 4.14 shows

this situation.

Assume that 1 TSV is failed in a TSV-chain of size 6, all possible shifting

111

situations are enumerated in Figure 4.14. When no TSV is failed, no shifting

is required. The TSV-chain is shown in the first row where the redundant

TSV is denoted as tsv r at the rightmost column. For each row below, the

leftmost column indicates which TSV is failed and the right columns show

the shifting situation. The last row lists the shifting probabilities of the TSVs

in the TSV-chain when 1 TSV is failed. For tsv 0, no matter which TSV in

the TSV-chain is failed, it is always shifted because it is on the position next

to the redundant TSV. On the contrary, tsv 4, which is at the head position

of the TSV-chain, need not be shifted unless tsv 4 itself is failed. In terms

of extra delays introduced by signal shifting, this property of TSV-chain

indicates that the probability that the delay of a signal linked by a TSV is

increased depends on the position of the TSV in the TSV-chain. This means,

for signals that are timing critical, it is preferable to assign these signals at

the head parts of TSV-chains.

An evaluation for an extreme case where only one signal is timing critical

is shown in Figure 4.15. The x-axis stands for the number of TSVs in a TSV-

chain and the y-axis stands for the probability that the timing critical signal

is shifted. The line denoted as “Unaware” represents that the timing critical

signal has equal probability to be located at any position of a TSV-chain.

And the line denoted as “Timing Aware” represents that the timing critical

signal is always located at the beginning of a TSV-chain. Assume that the

failure rate of each TSV is identical and there is only one failed TSV. The

result in Figure 4.15 shows that, in “Unaware” cases, the probabilities for the

timing critical signal to be shifted are greater than 50% in all cases. On the

contrary, by assigning the timing critical signal to the head of a TSV-chain,

112

20%

30%

40%

50%

60%

70%

. o
f t

he
 T

im
in

g
C

ri
tic

al

Si
gn

al
 to

 b
e

sh
ift

ed

Unware

Timing Aware

0%

10%

20%

30%

40%

50%

60%

70%

10 20 30 40 50 60 70 80 90 100

Pr
ob

. o
f t

he
 T

im
in

g
C

ri
tic

al

Si
gn

al
 to

 b
e

sh
ift

ed

of TSVs in a TSV Chain

Unware

Timing Aware

Figure 4.15: Evaluation on the Possibility for the Timing Sensitive Signal to
Be Shifted

the probability is reduced to 2.93% in average. Based on the evaluation,

timing sensitive signals should always be routed through the TSVs

located at the head of TSV-chains . This is one of the guideline that

should be followed when designing TSV-chains.

The next issue is to minimize the delay caused by signal shifting. This

can be done by minimizing the distance between the connected TSVs in a

TSV-chain. Since TSVs in each block are placed in a grid-based structure,

by requiring the connected TSVs in a TSV-chain to be neighbors in the grid-

based structure, minimal and fixed shifting delay can be guaranteed. This

also makes the shifting delay predictable in early design stages. Thus, the

second guideline for TSV-chain design is that any two connected TSVs

in a TSV-chain must be next to each other in the grid-based struc-

ture.

113

4.6.2 TSV-chain Design Problem

For each TSV block in a plane, the structure of the TSV-chain needs to be

considered. The analysis in Section 4.6.1 indicates that timing critical signals

should always be routed through the TSVs located at the head parts of TSV-

chains. In current design flow, signals that are assigned to each TSV block

are roughly determined in floorplan stage. However, the exact assignment

of signals to TSVs is not necessarily to be done in this stage. From the

perspective of physical design, leaving the assignment of signals to TSVs to

be done in routing stage is beneficial to minimize wire length. Therefore, in

addition to the guidelines obtained in Section 4.6.1, the design of TSV-chain

should also consider routing issues.

Based on the concept of bounding box, discussion on wire length is given

first. For two pins on two different tiers to be connected, the relation between

the bounding box of these two pins and a TSV block can be listed as follows.

First, the bounding box and the TSV block can be non-overlapped. In this

situation, only going through a TSV on the boundary of the TSV block can

result in minimum wire length. Next, the TSV block can be either partially

or completely overlapped by the bounding box. In this situation, any TSV

that is overlapped by the bounding box can result in minimum wire length.

Unless the bounding box is completely contained in the TSV block, a TSV

on the boundary of the TSV block can always be found for minimum wire

length. The discussion shows that, TSVs on the boundary of a TSV block

have higher probabilities to be routed through for minimum wire length.

These TSVs should be assigned as head parts of TSV-chains.

A spiral-style chaining policy is proposed for TSV-chain design. In a

114

Corner of a TierBoundary of a Tier
(a) Spiral-Style (b) Snake-Style (c) Hybrid

Figure 4.16: Chaining Styles

TSV block, by picking a TSV in the central position to be the starting point,

spiral-style chaining results in a routing path where all TSVs on the boundary

are at one end. The starting TSV is assigned as redundant TSV while the

other end becomes the head of a TSV-chain. An example for a 4 × 5 TSV

block is shown in Figure 4.16(a) where TSVs in grey are head and good for

timing critical signals. In routing stage, routers can choose to assign timing-

critical signals to TSVs that are on the boundary of a TSV block. This can

reduce the probability for a timing critical signal to be shifted.

The spiral-style chaining policy is appropriate for a TSV block that is

not on the boundary or the corner of a tier. For a TSV block located on the

boundary of a tier, most signals assigned to that TSV block are connected

from the opposite side of the tier boundary. In this case, a snake-style chain-

ing policy satisfies the requirement. The result is shown in Figure 4.16(b).

For a TSV block located on the corner, most signals assigned to that TSV

block are connected from the counter direction of the tier corner. In this case,

a hybrid chaining policy as shown in Figure 4.16(c) becomes the best candi-

date. Based on the position of each TSV block, one of these three chaining

policies is applied.

115

4.6.3 Physical Design Flow Considering TSV-Chain

In current design flow for 3D ICs , 3D partitioning first takes place to deter-

mine in which tier each design blocks to be placed. The number of required

TSVs for signals between two consecutive tiers is determined in this stage.

Next, in floorplan stage, blocks with fix area but unknown dimensions are

placed in each tier. To provide communication links between blocks in dif-

ferent tiers, TSV blocks are placed. The number of signals to be assigned

to each TSV block as well as the position of each TSV block are roughly

determined in this stage. Based on the discussion in Section 4.4, the number

of TSVs in each TSV block should be limited. Partitioning may be required

for large TSV blocks. Based on the position of each TSV block, the struc-

ture of each TSV-chain is determined. In place and route stage, routers

should be aware of the TSV-chain structure in each TSV block. Based on

design constraints and requirements, router assigns timing critical signals to

TSVs that are located at the head of TSV-chains. The overall design flow

for TSV-chain is shown in Figure 4.17.

116

3D Partitioning:
TSVs required for signals on each tier are determined

Placement

3D Routing: Assignment of signals to TSVs
Considering the structure of each TSV-chain when

performing the assignment of signals to TSVs

3D Floorplanning: TSV Blocks are determined
1. Partitioning is required for large TSV blocks
2. The size of each TSV block is limited

Based on the position of each TSV block, determining
the structure of each TSV-chain

Figure 4.17: Proposed Design Flow for TSV-Chain

117

Chapter 5

Conclusion

In this dissertation, architecture designs and optimization techniques have

been proposed for modern integration technologies in cache, memory and

interconnect levels.

In cache level, we have found that a fixed expansion scheme supported

by original expandable cache is insufficient for applications that are complex

and irregular, A refined cache structure of expandable cache which consid-

ers programs behavior and has many flexible expansion schemes has been

proposed. By adding an extra register and a small number of XOR gates

to the cache design, the expansion scheme of our design can be dynamically

changed by executing configuration instructions which are inserted at compile

time. This new design leads to lower miss rate and better power efficiency.

The experimental results of SPEC CPU2000 have shown that our proposed

cache design effectively improves the miss rate by 14.74% as compared with

the original expandable cache. In terms of energy improvement ratio, our

method is 5.62% higher than that of expandable cache when the baseline is

set as the energy consumption of 2-way set-associative.

118

For 3D memory systems, we have proposed a static thermal management

scheme for stacked DRAM dies. Both physical and software level issues are

considered in our method. In physical level, the floorplan of DRAM die and

power behavior of bank access are analyzed to generate candidate configura-

tions. In software level, the memory space of the programs run on the system

are partitioned to segments based on access frequency. The configuration de-

cision and the mapping segments to physical locations are formulated as an

ILP problem. For single-core systems, experiments show that our method can

reduce temperature of memory system by 17.1◦C as compared to a straight-

forward mapping in the best case, and 13.3◦C in average. For systems with

4 cores, the temperature reductions are 9.9◦C and 11.6◦C in average when

L1 cache of each core is set to 4KB and 8KB, respectively.

For the communication links for dies in vertical direction, a new redun-

dant TSV architecture with reasonable cost for ASICs has been proposed.

Our proposed redundant TSV scheme is scalable and can be adjusted to fit

the failure rate of TSV for different TSV processes and bonding technologies.

Testing circuits for the proposed architecture have been introduced. Design

issues including recovery rate and timing problem have been investigated.

Based on probabilistic models, the new design can successfully recover most

of the failed TSVs and increase the yield to 99.4%. This can effectively reduce

the cost of manufacturing 3D designs.

119

Bibliography

[1] L. Lee, S. Kannan, and J. Fridman, “MPEG4 Video Codec on a Wire-

less Handset Baseband Syatem,” In Proc. Workshop Media and Signal

Processors fir Embedded Systems and SOCs, 2004.

[2] G. Bournoutian and A. Orailoglu,“Miss Reduction in Embedded Proces-

sors Through Dynamic, Power-Friendly Cache Design” in Proc. Design

Automation Conference (DAC), June, 2008, pp. 304-309.

[3] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,

“Scratchpad Memory: A Design Alternative for Cache On-Chip Mem-

ory in Embedded Systems,” in Proc. 10th International Symposium on

Hardware/Software Codesign, New York, 2002.

[4] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The Filter Cache: An

Energy efficient memory structure,” in Proc. 30th International Sympo-

siun on Microarchitecture, 1997, pp. 184-193.

[5] A. Janapsatya, S. Parameswaran, and A. Ignjatovic, “Hard-

ware/Software Managed Scratchpad Memory for Embedded System,”

in Proc. International Conference on Computer-Aided Design (ICCAD),

2004.

120

[6] C. T. Wu, A.-C. Hsieh, and TingTing Hwang, “Instruction Buffering for

Nested Loops in Low-Power Design,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 14, No.7, July 2006, pp. 780-784.

[7] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning Program

and Data Objects to Scratchpad for Energy Reduction,” in Proc. Design,

Automation and Test in Europe (DATE), 2002.

[8] M. Verma, L. Wehmeyer, and Peter Marwedel, “Cache-Aware Scratch-

pad Allocation Algorithm,” in Proc. Design, Automation and Test in

Europe (DATE), 2004.

[9] F. Angiolini, L. Benini, and A. Caprara, “An Efficient Profile-based

Algorithm for Scratchpad Memory Partitioning,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 24,

No. 11, Nov. 2005, pp. 1660-1676.

[10] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J.

M. Mendias, “An Integrated Hardware/Software Approach for Run-

Time Scratchpad Management,” in Proc. Design Automation Confer-

ence (DAC), 2004.

[11] S. Udayakumaran, A. Dominguez, and Rajeev Barua, “Dynamic Allo-

cation for Scratch-Pad Memory using Compile-Time Decisions,” ACM

Transactions on Embedded Computing Systems (TECS), Vol. 5, Issue

2, May 2006.

121

[12] D. H. Albonesi, “Selective Cache Ways: On-demand Cache Resource

Allocation,” 32th International Symposium on Microarchitecture, 1999,

pp. 248-259.

[13] A. González, C. Aliagas, and M. Valero, “A Data Cache with Multiple

Caching Strategies Tuned to Different Types of Locality,” 9th Interna-

tional Conference on Supercomputing, 1995, pp. 338-347.

[14] P. Petrov and A. Orailoglu, “Performance and Power Effectiveness in

Embedded Processors - Customizable Partitioned Caches,” IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems, 2001,

pp. 1309-1318.

[15] N. P. Jouppi, “Improving Direct-mapped Cache Performance by the Ad-

dition of Small Fully-Associatve Cache and Prefetch Buffers,” SIGARCH

Computer Architecture News, 1990, pp. 364-373.

[16] A. Agarwal and S. D. Pudar, “Column-Associative Caches: a Techniques

for Reducing the Miss Rate of Direct-Mapped Caches,” SIGARCHI

Computer Architecture News, 1993, pp. 179-190.

[17] ARM926 Processor, http://www.arm.com/products/processors/classic/arm9/

[18] H. Homayoun, S. Pasricha, M. Makhzan, and A. Veidenbaum, “Dynamic

Register File Resizing and Frequency Scaling to Improve Embedded Pro-

cessor Performance and Energy-Delay Efficiency,” Design Automation

Conference, June, 2008, pp. 68-71.

122

[19] F. Catthoor, K. Danckaert, K. K. Kulkarni, E. Brockmeyer, P. G.

Kjeldsberg, T. van Achteren, and T. Omnes, “Data Access and Stor-

age Management for Embedded Programmable Processors,” Springer,

ISBN: 978-0-7923-7689-7, 2002.

[20] D. C. Burger, T. M. Austin and S. Bennett, “Evaluating Future

Microprocessors– The SimpleScalar Tool Set,” Technical Report 1342,

University of Wisconsin-Madison, CS Department, June 1997

[21] SPEC CPU2000 Benchmarks, http://www.spec.org/cpu/.

[22] S. J. Wilton, N. P. Jouppi, “CACTI: An Enhanced Cache Access and

Cycle Time Model,” IEEE Journal on Solid-State Circuits, 31(5): pp.

677-688, 1996.

[23] K. L. Tai, “System-In-Package (SIP): Challenges and Opportunities,”

Asia and South Pacific Design Automation Conference, 2000, pp. 191-

196.

[24] Alexandru Pancescu, “Hynix Storms The NAND Industry - 24 nand

memory chips only 1.4mm thick,” SOFTPEDIA, Sep. 7, 2007.

[25] K. L. Tai, R. C. Frye, B. J. Han, M. Y. Lau, and D. Kossives, “A

chip-on-chip DSP/SRAM multichip module,”Int’l Conf. on Multi-chip

Modules, 1995, pp 466-471.

[26] Y. L. Low, R. C. Frye, and K. J. O’conner, “Design methodology for

chip-on-chip applications,” IEEE Trans. on Components, Packaging,

and Manufacturing Technology Part B, vol. 21, Aug. 1998, pp. 298-301.

123

[27] M. X. Wang, K. Suzuki, W. Dai, Yee L. Low, K. J. O’conner and K. L.

Tai, “Integration of Large-Scale FPGA and DRAM in a Package Using

Chip-on-Chip Technology”, Asia and South Pacific Design Automation

Conference, pp. 205- 210, 2000.

[28] Michael Wang, Katsuharu Suzuki, Wayne Dai, Atsushi Sakai, Kiwamu

Watanabe, “Configurable Area-IO Memory for System-in-a-Package

(SiP),” 27th European Solid-State Circuits Conference, September,

2001.

[29] Michael Wang, Katsuharu Suzuki, Wayne Dai, “Memory and Logic In-

tegration for System-in-a-Package,” 4th Int’l Conf. on ASIC, October,

2001.

[30] Kiran Puttaswamy and Gabriel H. Loh, “Thermal Analysis of a 3D Die-

Stacked High-Performance Microprocessor,” ACM/IEEE Great Lakes

Symposium on VLSI, pp 19-24, 2006.

[31] Y. I. Kim, K. H. Yang, W. S. Lee, “Thermal Degradation of DRAM

Retention Time: Characterization and improving techniques,” Proceed-

ings of the 42nd IEEE Int’l Reliability Physics Symp., pp. 667-668, April

2004.

[32] D. Brooks and M. Martonosi, “Dynamic Thermal Management for

High-Performance Microprocessors,” Proceedings of the Seventh In-

ternational Symposium on High-Performance Computer Architecture,

February 2001.

124

[33] K. Skadron, T. Abdelzaher and M. R. Stan, “Control Theoretic Tech-

niques and Thermal-RC Modeling for Accurate and Localized Dynamic

Thermal Management,” Proceedings of the Eighth International Sym-

posium on High-Performance Computer Architecture, February 2002.

[34] Y. Li, D. Brooks, Z. Hu, and K. Skadron, “Performance, Energy, and

Thermal Considerations for SMT and CMP architectures,” Proceedings

of the 8th Int’l Symp. on High-Performance Computer Architecture,

Feb. 2005.

[35] K. Sankaranarayanan, S. Velusamy, M.R. Stan, and K. Skadron, “A Case

for Thermal-Aware Floorplanning at the Microarchitectural Level,” The

Journal of Instruction-Level Parallelism, Septempter 2005.

[36] M. Mutyam, F. Li, V. Narayanan, M. Kandemir and M. J. Irwin,

“Compiler-Directed Thermal Management for VLIW Functional Units,”

In. ACM SIGPLAN/SIGBED Conference on Languages, Compilers,

and. Tools for Embedded Systems, June 2006.

[37] Y-F. Tsai, Yuan Xie, N. Vijaykrishnan, M. J. Irwin, “Three-Dimensional

Cache Design Exploration Using 3DCacti,” Proceedings of IEEE Inter-

national Conference on Computer Design (ICCD), pp. 519-524, Oct.

2005.

[38] W. Huangry, K. Sankaranarayanany, R. J. Ribandoz, M. R. Stan and

K. Skadron, “An Improved Block-Based Thermal Model in HotSpot

4.0 with Granularity Consideration”, Proceeding of the Workshop on

Duplicating, Deconstructing, and Debunking, June 2007

125

[39] HY5DU12822D(L)TP-xI/HY5DU121622D(L)TP-xI 512Mb DDR

SDRAM Technical Data Sheet, http://www.hynix.com/

[40] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “MediaBench: A

Tool for Evaluating and Synthesizing Multimedia and Communications

Systems,” in 30th MICRO, pp. 330-335, December 1997

[41] A. Malik, B. Moyer and D. Cermak, “A Lower Power Unified Cache Ar-

chitecture Providing Power and Performance Flexibility,” International

Symposium on Low Power Electronics and Designs, 2000

[42] JM H.264/AVC CODEC 14.1, http://iphome.hhi.de/suehring/tml/

[43] lp solve, http://lpsolve.sourceforge.net/

[44] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, “3D ICs: A Novel

Chip Design for Improving Deep Submicron Interconnecct Performance

and System-on-Chip Integration,” in Proc. IEEE, vol. 89, no. 5, 2001,

pp. 602-633.

[45] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule,

M. Steer, and P. D. Franzon, “Demistifying 3D ICs: The Pros and Cons

of Going Vertical,” IEEE Design & Test of Computers, vol. 22, no. 6,

Nov./Dec., 2005, pp. 498-510.

[46] J. Burns, L. McIlrath, C. Keast, C. Lewis, A. Loomis, K. Warner, and

P. Wyatt, “Three-Dimensional Integrated Circuit for Low Power, High-

Bandwidth Systems on a Chip,” ISSCC Dig. of Tech. Papers, Feb., 2001,

pp. 268-269.

126

[47] P. R. Morrow, M. J. Kobrinsky, S. Ramanathan, C.-M. Park, M.

Harmes, V. Ramachandrarao, H.-M. Park, G. Kloster, S. List, and S.

Kim, “Wafer-Level 3D Interconnects via Cu Bonding,” in Proc. AMC,

2004, pp. 125-130.

[48] P. Garrou, C. Bower, and P. Ramm, “Handbook of 3D Integration:

Technology and Application of 3D Integrated Circuits,” Weinheim:

WILEY-VCH Verlag GmbH & Co. KGaA, 2008, vol. 1-2.

[49] J. Cong, J. Wei, and Y. Zhang, “A Thermal-Driven Floorplanning Al-

gorithm for 3D ICs,” in Proc. ICCAD, Nov. 2004, pp. 306-313.

[50] W.-L. Hung, G. M. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin, “In-

terconnect and Thermal-Aware Floorplanning for 3D Microprocessors,”

in Proc. ISQED, Mar., 2006, pp. 104-109.

[51] P. Zhou, Y. Ma, Z. Li, R. P. Dick, L. Shang, H. Zhou, X. Hong, and

Q. Zhou, “3D-STAF: Scalable Temperature and Leakage Aware Floor-

planning for Three-Dimensional Integrated Circuits,” in Proc. ICCAD,,

Nov. 2007, pp. 590-597.

[52] M.-C. Tsai, T.-C. Wang, and T. T Hwang, “Through-Silicon Via Plan-

ning in 3D Floorplanning,” IEEE Trans. Very Large Scale Integr.(VLSI)

Syst., to be published.

[53] B. Goplen and S. Sapatnekar, “Efficient Thermal Placement of Standard

Cells in 3D ICs using a Force Directed Approach,” in Proc. ICCAD, Nov.

2003, pp. 86-89.

127

[54] J. Cong, G. Luo, J. Wei, and Y. Zhang, “Thermal-Aware 3D IC Place-

ment Via Transformation,” in Proc. ASP-DAC, Jan. 2007, pp. 780-785.

[55] B. Goplen and S. Sapatnekar, “Placement of Thermal Vias in 3-D ICs

Using Various Thermal Objectives,” IEEE Trans. Comput.-Aided Des,

Integr. Syst., vol. 25, no. 4, Apr. 2006, pp. 692-709.

[56] H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3D ICs

Considering Temporally and Spatially Variant Thermal Power”, IEEE

TVLSI, vol. 16, no. 12, December 2008, pp. 1609-1619.

[57] T. Zhang, T. Zhan, and S. Sapatnekar, “Thermal-Aware Routing in 3D

ICs”, in Proc. ASP-DAC, March 2006, pp. 309-314.

[58] Hao Yu, Joanna Ho, and Lei He, “Allocating Power Ground Vias in 3D

ICs for Simultaneous Power and Thermal Integrity,” ACM TODAES,

vol. 14, no. 3, May 2009, pp. 41-71.

[59] M. Pathak, S. K. Lim, “Performance and Thermal-Aware Steiner Rout-

ing for 3-D Stacked ICs,” IEEE TCAD, vol. 28, no. 9 Sep. 2009, pp.

1373-1386.

[60] P. Zhou, K. Sridharan, and S. Sapatnekar, ”Optimizing Decoupling Ca-

pacitors in 3D Circuits for Power Grid Integrity,” IEEE Des. Test Com-

put., vol. 26, no. 5, Sep./Oct. 2009, pp. 15-25.

[61] P. Falkenstern, Y. Xie, Y.-W. Chang, and Y. Wang, “Three-Dimensional

Integrated Circuits (3D IC) Floorplan and Power/Ground Network Co-

Synthesis,” in Proc. ASP-DAC, pp. 169-174, Jan. 2010.

128

[62] H.-T. Chen, H.-L. Lin, Z.-C. Wang and T. T. Hwang, “New Architec-

ture for Power Network in 3D IC,” presented in Proc. DATE, Grenoble,

France, Mar. 2011.

[63] U. Kang, H.-J. Chung, S. Heo, S.-H. Ahn, H. Lee, S.-H. Cha, J. Ahn, D.

Kwon, J. H. Kim, J.-W. Lee, H.-S. Joo, W.-S. Kim, H.-K. Kim, E.-M.

Lee, S.-R. Kim, K.-H. Ma, D.-H. Jang, N.-S. Kim, M.-S. Choi, S.-J. Oh,

J.-B. Lee, T.-K. Jung, J.-H. Yoo, and C. Kim, “8Gb 3D DDR3 DRAM

Using Through-Silicon-Via Technology,” ISSCC Dig. of Tech. Papers,

Feb., 2009, pp. 130-131.

[64] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A Low-Overhead

Faule Tolerance Scheme for TSV-Based 3D Network on Chip Links,” in

Proc. ICCAD, 2008, pp. 598-602.

[65] N. Miyakawa, T. Maebashi, N. Nakamura, S. Nakayama, E. Hashimoto,

and S. Toyoda, “New Multi-Layer Stacking Technology and Trial Manu-

facture,” Honda Research Institute Japan Co. Ltd., Nov. 2007.

[66] H.-H. Lee and K. Chakrabarty, “Test Challenges for 3D Integrated Cir-

cuits,” IEEE Design & Test of Computers, vol. 26, no. 5, Sep./Oct.,

2009, pp. 26-35.

[67] R. Patti, “Three-Dimensional Integrated Circuits and the Future of

System-on-Chip Designs,” Proc. IEEE, vol. 84, no. 6, June 2006, pp.

1214-1224.

[68] A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S.

E. Steen, A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and

129

M. Ieong, “Three Dimensional Integrated Circuits,” IBM Journal of

Research and Development, vol. 50, no. 4/5, July/Sepetember 2006, pp.

491-506.

[69] R. Patti, “Impact of Wafer-Level 3D Stacking on the Yield of ICs,”

Future Lab Intl., issue 23, July 2007, pp. 103-105.

[70] N. Miyakawa, “A 3D Prototyping Chip based on a Wafer-Level Stacking

Technology,” Proc. ASP-DAC, Jan. 2009, pp. 416-420.

[71] B. Swinnen, W. Ruythooren, P. De Moor, L. Bogaerts, L. Carbonell, K.

De Munck, B. Eyckens, S. Stoukatch, D. Sabuncuoglu Tezcan, Z. Tokei,

J. Vaes, J. Van Aelst, and E. Beyne, “3D Integration by Cu-Cu Thermo-

Compression Bonding of Extremely Thinned Bulk-Si Die Containing 10

μm Pitch Through-Si Vias,” in Proc. IEDM, Dec. 2006.

[72] A. W. Topol, D. C. La Tulipe, L. Shi, S. M. Alam, D. J. Frank, S.

E. Steen, J. Vichiconti, D. Posillico, M. Cobb, S. Medd, J. Patel, S.

Goma, D. DiMilia, M. T. Robson, E. Duch, M. Farinelli, C. Wang, R.

A. Conti, D. M. Canaperi, L. Deligianni, A. Kumar, K. T. Kwietniak, C.

DEmic, J. Ott, A. M. Young , K. W. Guarini, and M. Ieong, “Enabling

SOI-Based Assembly Technology for Three-Dimensional Integrated Cir-

cuits,” in Proc. IEDM, Dec. 2005, pp. 352-355.

[73] ITRS, “International Technology Roadmap for Semiconductors,” 2009.

[Online]. Available: http://www.itrs.net/

130

[74] A. M. Rodin, J. Callaghan, and N. Brennan, “High Throughput

Low CoO Industrial Laser Drilling Tool”, 2008. [Online]. Available:

http://www.emc3d.org/

[75] L. W. Schaper, S. L. Burkett, S. Spiesshoefer, G. V. Vangara, Z. Rah-

man, and S. Polamreddy, “Architectural Implications and Process De-

velopment of 3-D VLSI Z-Axis Interconnects Using Through Silicon

Vias,” IEEE Trans. Adv. Packag., vol. 28, no. 3, Aug. 2005, pp. 356-366.

[76] A. Shayan, X. Hu, H. Peng, C.-K. Cheng, W. Yu, M. Popovich, T. Toms,

and X. Chen, “Reliability Aware Through Silicon Via Planning for 3D

Stacked ICs,” in Proc. DATE), Apr. 2009, pp. 288-291.

[77] M. Puech, J. M. Thevenoud , J. M. Gruffat, N. Launay, N. Arnal, and

P. Godinat, “DRIE achievements for TSV covering Via First and Via

Last Strategies,” ALCATEL Micro Machine System, Annecy, France,

2008. [Online]. Available: http://www.alcatelmicromachining.com/.

[78] Sung Kyu Lim, “TSV-Aware 3D Physical Design Tool Needs for Faster

Mainstream Acceptance of 3D ICs,” presented at the 47th ACM Design

Autom. Conf. Knowledge Center Anaheim, CA., 2010/

[79] N. Ranganathan, L. Ebin, L. Linn, W. S. V. Lee, O. K. Navas, V.

Kripesh, and N. Balasubramanian, “Integration of High Aspect Ratio

Tapered Silicon Via for Silicon Carrier Fabrication,” IEEE Trans. Adv.

Packag., vol. 32, issue 1, Feb. 2009, pp. 62-71.

[80] J. S. Pak, C. Ryu, and J. Kim, “Electrical Characterization of Trough

Silicon Via (TSV) Depending on Structural and Material Parameters

131

based on 3D Full Wave Simulation,” presented at the EMAP, Daejeon,

South Korea, Nov. 2007.

[81] X.-P. Wang andW.-Y. Yin, “Multi-Physics Characterization of Through

Silicon Vias (TSV) in the Rresence of a Periodic EMP,” presented at

the EDAPS, Shatin, Honk Kong, Dec. 2009.

[82] J. Plummer and P. Griffin, “Material and process limits in silicon VLSI

technology,” in Proc. IEEE, vol. 89, issue. 3, Mar. 2001, pp.240-258.

[83] D. Sinha, J. Luo, S. Rajagopalan, S. Batterywala, N. V. Shenoy, and

H. Zhou, “Impact of Modern Process Technologies on the Electrical

Parameters of Interconnects,” in Proc. VLSI Des., Jan. 2007, pp. 875-

880.

[84] Ankur Jain, “Three-dimensional (3D) Technology: An Overview of

Challenges and Opportunities” 3D IC Design and Architecture Work-

shop, in Hsinchu, Taiwan, Sep. 2008.

132

	cover_page
	中文摘要
	誌謝
	thesis

